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Abstract

The skeletal structures of solid objects play an impor-
tant role in medical and industrial applications. Given a
volumetrically sampled solid object, our method extracts a
well-connected and not-fragmented skeletal structure rep-
resented as a polygon mesh. The purpose is to achieve
a noise-robust extraction of the skeletal mesh from a real-
world object obtained using a scanning technology such as
the CT scan method. We first approximate the input image
intensity through a set of spherically supported polynomi-
als that provide an adaptively smoothed intensity field, and
then perform a polygonization process to find the extremal
sheet of the field, which is regarded as a skeletal sheet in this
research. In our polygonization, a subset of the weighted
Delaunay tetrahedrization defined by a set of spherical sup-
ports is used as an adaptively sampled grid. The derivatives
for detecting extremality are analytically evaluated at the
tetrahedron vertices. We also demonstrate the effectiveness
of our method by extracting skeletal meshes from noisy CT
images.

1. Introduction

The skeletal structures of solid objects have various ap-
plications in shape modeling and geometry processing. A
shape simplified from a 3D solid to 2D skeletal sheets or
1D skeletal curves gives us more intuitive shape informa-
tion for use in deformation, recognition, matching etc.

Skeletal-sheet extraction is important in industrial appli-
cations as well as in the field of computer graphics. Re-
cent advances in X-ray-based CT scanning technology have
enabled accurate measurement of mechanical objects con-
sisting of thin parts, as shown in the images on the left of
Fig. 1. We can easily extract the boundary of a scanned ob-

Figure 1. Left: three cross sections of a CT
image. Right: an isosurface (light pink) and
a skeletal mesh extracted using our method
(dark blue). The coloring on the half cross
section shows the input CT values (red for
high and blue for low).

ject using isosurface extraction techniques such as [16, 13].
However, as covered in [9, 10], it is often necessary to ex-
tract the scanned object as single sheets (rather than as a
two-sided thin object) for further digital manipulation such
as reverse engineering, quality evaluation or physical simu-
lation. Skeletal-sheet extraction is one possible solution to
this problem. The goal of this research is to extract a poly-
gon mesh approximating the skeletal sheets of a CT-scanned
thin object as demonstrated in Fig. 1.

Previous work. As reviewed in [5], many good methods
for extracting skeletal structures have been developed so far.
These are briefly reviewed below.
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Given a voxelized solid, one method performs a thin-
ning algorithm to obtain voxelized 1D/2D skeletons [12].
Another applies a distance transformation from the bound-
ary voxels, and the voxels taking the local maxima of the
distance field are then detected [22]. These techniques ex-
tract skeletal structures as voxels, thus requiring the applica-
tion of an additional polygon mesh generation if the output
model is desired as a piecewise linear approximation [10].

A polygonal approximation of the medial axis (i.e. skele-
tal sheets) can be directly obtained using a Voronoi diagram
of sampling points on a solid boundary [1, 6]. Although this
technique does not require grid sampling inside the solid,
the topology of the resulting mesh is sensitive to small per-
turbations of the solid boundary. The method is therefore
not suited to the processing of scanned objects, which typi-
cally have noisy boundaries.

Using a potential field [17, 4] is another possible ap-
proach. The skeletal points are extracted as the stationary
points of a gradient descent flow defined by the sum of ra-
dial functions centered at points on a given solid bound-
ary. This approach is mainly used for extracting 1D skeletal
curves.

Our approach. Let a 3D scalar fieldf(x) be aC2- con-
tinuous function defined in a domain including a given solid
object.f can be constructed from CT images of the object.
Our skeletal mesh extraction is simply to find the locus of
points satisfying the following conditions:

⟨e,∇f⟩ = 0, λ < 0

wheree is the eigenvector of the Hessian associated with
the minimum eigenvalueλ. This condition means thatf
takes the local maximum along directione, which is often
referred to as a height ridge in image processing [7, 14]. In
geometric modeling, surfaces defined using such extremal
conditions are generally called extremal surfaces [2].

A typical choice for f is the distance field from a
solid boundary, but the skeletal sheet of a distance field is
topologically too complicated (in terms of the number of
branches) if the boundary surface is not smooth enough.
Our simple choice forf is therefore an approximation of
the intensity values of CT images, which are higher inside
scanned objects. We also assume these images are almost
noise free though our method can tolerate a certain amout of
noise in real CT images as shown in the examples in Sec. 3.

For a smooth approximation of the input values assigned
to 3D points, we use a partition of unity technique [23] con-
sisting of a set of spherically supported quadratic polyno-
mials. This approach is similar to that of sparse low-degree
polynomial implicit surfaces [18], but local approximations
are generated inside the solid as well as on the boundary
surface since we want to find the object’s internal character-

istics. Our approximation with adaptively supported poly-
nomials has the following benefits:

• Adaptive smoothing : Our error-driven support-
size decision has a smoothing effect on scanning
noise while preserving important geometric features.
Smoothing with a fixed support size (such as Gaus-
sian convolution of the image [15]) often leads to
over/undersmoothing.

• Adaptive grid generation : Regular polygonization of
skeletal sheets is performed on a uniformly sampled
cubical grid [11]. In contrast, the version used in our
polygonization is an adaptively sized tetrahedral grid
obtained from the spherical supports of local approxi-
mations. Polygonization using the adaptively sampled
grid gives us adaptive sampled skeletal meshes.

2. Algorithm

2.1. Algorithm overview

We take a set of spatial points equipped with normalized
valuesP = {pi = (xi, vi)|xi ∈ R3, vi ∈ [0, 1]} as input,
such as CT scan data and grayscale images. Fig. 2 (a) shows
a 2D analogous example. A set consists of two kinds of
point, i.e. those belonging to the object and those that make
up the background. We assume that points with a value
greater than the user’s specificationT represent the object.
TakingT as input is reasonable because each material has
a unique CT value. These points are referred to asobject
points, and are described asPobj = {pi|vi > T}.

First, our algorithm constructs a set of locally supported
quadratic functions that approximate the values ofp ∈ P.
A support is a sphere centered at a randomly selected point
amongpi ∈ Pobj, and its radius is adapted to the distribu-
tion of values in the vicinity of the center (Fig. 2 (b)). The
number of generated functions is much lower than the num-
ber of input points. We explain details in Sec. 2.2.

Next, a tetrahedral mesh representing the object is gen-
erated by connecting the centers of the function supports, as
a 2D version (triangular mesh) is shown in Fig. 2 (c). The
connectivity of this mesh depends on the adjacency of the
supports. More details are described in Sec. 2.3.

Finally, the algorithm extracts the skeletal mesh using
the tetrahedral mesh as a grid. The results for 2D data are
shown in Fig. 2 (d). Points on the skeletal sheet are detected
on mesh edges. In this step, we use the gradient and Hessian
of the functions, which are estimated well with the help of
the function set. If a skeletal point is detected on an edge,
a small patch with vertices inside the tetrahedra incident to
the edge is generated around the edge. The details are given
in Sec. 2.4.
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(a) (b) (c) (d)

Figure 2. (a) An input, a 650 × 650 binalized image of a Chinese character. The number of Pobj is
61, 300. (b) The support circles of approximation functions. The total number of functions is 919.
(c) The triangular mesh of (b). (d) The skeletal structure. Nonmanifold parts are well detected.

2.2. Approximation

A set of spherically and adaptively supported functions
is generated to approximate the values ofP. The approxi-
mation function is represented as a partition of unity based
on polynomial approximations[23], i.e.

f(x) =
∑

i

ϕi(x)gi(x),

wherex = (x, y, z) ∈ R3. Expressing a radius and a center
of a support inri andci, weight functionϕi(x) is described
as

ϕi(x) =
wri(∥x − ci∥)∑
j wrj (∥x − cj∥)

,

wri(d) =

 1

(2π)
2
3 r2

i

e
− d2

2r2
i (d ≤ ri)

0 (otherwise)

and
∑

i ϕi(x) = 1. This truncation ofwri causes a discon-
tinuity of f(x). In order to makef(x) continuous, cubic B-
Spline may be a good candidatewri(d). We experimented a
B-Spline version but could not find discernible differences
of the quality of results.

We use a second-order equation as a polynomialgi,

gi(x) =cxxx2 + cyyy2 + czzz
2 + cxyxy + cyzyz

+czxzx + cxx + cyy + czz + c0

where each coefficient is inR.
The generation of a set of local approximations inf is

summarized as below.

1. SetPobj as a center candidate list denoted byC . Mark
all points inC asuncovered.

2. Select a pointpi randomly fromC and decide the ra-
dius and function (more details are given below).

3. Remove some points fromC (details below). IfC =
∅ then the algorithm terminates, otherwise go back to
step 2.

Decision of radius and function. We generate supports
following the error-driven approach proposed in [20]. Orig-
inal CT data include noises therefore using approximated
data is better. To determine the support radius with noise
toleranceε we solve Eq. (1) withε of 5% of the range of the
obtained CT scanned value.

Ei(ri) = ε (1)

where

Ei(r)2 ≡
∑

j
ϕj(x)(gi(xj) − vj)2

∣∣∣
gi(x)=argmin

gi

E2
i (r)

.
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We sum over the values of points whose distances to the
center are less than or equal tor. gi(x) is a minimizer of
Ei(r).

Under the assumption that the approximation error
monotonically increases, Eq. (1) is solved by a bisection
method [21]. This equation is a means to maximize the ra-
dius of the support without exceeding the error tolerance.

We describe the minimum and maximum radius asrmin

andrmax respectively. Setting a large value forrmax can
decrease the number of supports. We setrmax to the maxi-
mum thickness of the object which is typically obtained by
the scanned object itself. If thickness cannot be known, a
user can estimate it by a distance transformation of the in-
side of the object.rmin should be small enough with keep-
ing for the set of supports to be a covering of the object.

The intensity changes rapidly on boundaries, so circles
whose centers are near a boundary tend to have small radii.
In contrast, for centers that are placed far enough from the
boundary, the corresponding radii become large because the
intensity changes slightly or may not change in its support.

In the Fig. 3, a part of a binalized object is shown toward
the lower left. The radii of the small green circles are the
minimum radiusrmin, while the large circles drawn in blue
dotted lines have the maximum radiusrmax. The top graph
shows the change of intensity in the horizontal cross sec-
tion, while the one on the right is for the vertical. The cross
sections are drawn with red lines in the object figure. The
original intensities (the gray lines in the two graphs) are step
functions for this binalized object. The approximated inten-
sities shown with black lines have Gaussian-like shapes.

Figure 3. Lower left: a part of an object and
supports. Top and right: original (gray) and
approximated (black) intensities.

Covering. To generate a covering ofPobj, we re-mark
some points inside the support sphere ascovered. In 2D,
a similar method is proposed in [24], and we extend it to
3D. The points to be re-marked ascoveredare those inside
the convex hull defined by the object points in this support.
In the image on the left of Fig. 4, we show a state after a
new support (red) is generated. Supports already existing
before this adding are drawn in black. Gray points are al-
ready covered by existing supports because these are inside
the convex hull (blue) defined by the set of points included
in each support. The red points are included inside the or-
ange convex hull, and are newly marked ascovered. Points
not yet covered are shown in black. In the next step, the
center of the new support will be selected from among the
black points.

Figure 4. Left: changes in the status of points
after a new 2D support (red) is added. Right:
the one dimension raised supports (spheres)
and the triangulation corresponding to the
support circles in the image on the left.

2.3. Tetrahedrization

After generating the supports, we obtain a tetrahedriza-
tion by connecting their centers. An example for a2D case
is shown in the image on the right of Fig. 4 and a3D case is
in Fig. 5.

The tetrahedral meshes used in our method are a subset
of weighted Delaunay tetrahedrization by the definition of
[8]. The weighted Delaunay triangulation ofP is defined
by the dual of the weighted Voronoi diagram which uses a
weighted distance

ds(p) = d(p, s)2 − w2
s

for the distance between a pointp and a sites whose weight
is ws instead of the Euclidean distance. In our method,ws

is the radius of the support whose center iss. Since we
need only a mesh representing the object, it is sufficient to
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mesh only the domain covered by supports. More details
are described in the Appendix.

The image on the left of Fig. 5 is a part of generated
supports. The number of all supports is44, 095. The cor-
responding part of tetrahedral mesh is shown in the right
side. The number of vertices and tetrahedra are44, 084 and
226, 474 respectively.

The image on the left of Fig. 6 shows a triangulation gen-
erated using the above strategy. In this triangulation, some
skinny elements (with a low aspect ratio) appear around
the boundaries of the object. This is because some small
spheres are absorbed by larger spheres, meaning that their
centers cannot appear as vertices.

The mesh quality can be improved by smoothing the size
changes of elements. Multiplying all radii of supports by
α < 1 and using these new radius values facilitates the
avoidance of small sphere intersections being included in
other spheres. The result is that more vertices appear in the
generated mesh. Good results are obtained usingα = 0.75
in all examples in this paper. Such scaling enables a better
quality of tetrahedrization (see the right-hand part of Fig. 6).

Figure 5. Left: the supports for the same in-
put as Fig. 1. Right: the tetrahedral mesh
generated from the supports on the left.

2.4. Skeletal mesh extraction

To obtain a skeletal mesh, we first check each edge of
the tetrahedrization to see whether a crossing point with a
skeletal sheet exists. If such a point is detected, a small
patch is created around the edge. The set of patches created
by this process becomes the skeletal mesh.

Crossing points. Let p1, p2 be the end points of an edge
andx1, x2 the coordinates. See the image on the left of
Fig. 7. Using polynomial approximation functions is a pow-
erful method of estimating quality gradients and curvatures.
To extract a smooth skeletal mesh, we use the first- and
second-order derivatives:

g = ∇f, H = ∇g.

Figure 6. Left: many skinny triangles appear
along the boundary. Right: by shrinking the
support sizes, some points appear as mesh
vertices and the size of the triangles changes
slightly.

Let the eigenvectors corresponding to the minimum eigen-
values of HessianH at the verticesp1, p2 be e1,e2. We
assume the inner product⟨e1, e2⟩ > 0. If this is not true,
flip e2 to make−e2 and satisfy this condition. The exis-
tence of zero-crossing of⟨e, g⟩ is tested by the condition

⟨e1, g1⟩ ⟨e2, g2⟩ < 0.

Next, for edges that satisfy the above condition, we test
whether the extremum is the maximum or minimum. As
skeletal sheets correspond to maximum extrema, we need
only the crossing points where the skeletal sheet corre-
sponds to the maxima. We use a condition proposed in [19]
for this test: if the condition

⟨ei, gi⟩ ⟨(xj − xi), ei⟩ > 0

holds for(i, j) = (1, 2) or (2, 1), the edge has a crossing
point to be obtained. If a maxima exists between these end-
points the values off increase toward it alonge, so above
condition holds. This condition cannot decide the maximal-
ity if an edge is perpendicular toei, so we test this condi-
tion on the both endpoints of the edge. By assuming that
⟨e, g⟩ changes linearly along the edge, the coordinates of
the crossing point are calculated by

| ⟨e2, g2⟩ |
| ⟨e1, g1⟩ | + | ⟨e2, g2⟩ |

x1 +
| ⟨e1, g1⟩ |

| ⟨e1, g1⟩ | + | ⟨e2, g2⟩ |
x2.

Skeletal patches. Next, a skeletal patch is made around
crossing pointc as shown in the image on the right of Fig. 7.
The vertices of the patch are points inside the tetrahedra in-
cident to the edge wherec is found. A vertex is the cen-
troid of all crossing points on the edges belonging to each
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Figure 7. Left: an edge intersecting with a
skeletal sheet (green). Right: a skeletal patch
around the red edge.

tetrahedron, and a tetrahedron incident to an edge that has
a crossing point also has at least one crossing point. After
all vertices have been obtained, a patch is made by travers-
ing all the incident tetrahedra. For a sequence ofk vertices
q1, q2, . . . , qk, we split this patch intok triangles sharing
the crossing pointc, {q1, q2, c}, {q2, q3, c}, . . . , {qk, q1, c}.
This procedure is a tetrahedron-based variation of the dual
contouring proposed in [13].

Smoothing. To obtain well-connected and not-
fragmented skeletal patches, smoothing the fields of
derivatives is an effective choice. We can easily obtained
such a smoothing effect by enlarging the support sizes as
{σ ri} (σ > 1) before evaluatingg andH, which means
the local approximations are spread out more large regions.
The all results demonstrated in this paper are obtained by
σ = 4.

3. Results and Discussion

Experimental results. Some results for CT scan data are
shown in Figs. 8, 9 and 10. Each of extracted skeletal
meshes reaches to the ends of a thin object without branch-
ing. Fig. 8 gives the results for objects with uniform and
nonuniform thickness. Our algorithm works well for both
examples. The object in Fig. 10 has a noisy boundary. Our
algorithm extracts a smooth skeletal mesh from such data.

Comparison with image processing approaches.Since
input data is a CT image, it is also possible to extract
skeletal voxels using a conventional image processing ap-
proach. Given a certain value and direction at each voxels,

Figure 8. Left: a CT scanned object with a
uniform thickness. Right: a CT scanned ob-
ject with a non-uniform thickness. The color-
ing on the half cross section shows the input
CT values (red for high and blue for low).

Figure 9. Skeletal mesh for a perforated metal
plate.

non-maximum suppression [3] is one of the most popular
method for finding the voxels taking local maximum value
along the directions. For extracting skeletal voxels, we use
the standard Gaussian convolution of CT values to obtain
the valuesf and directione at each voxel [15].

As shown in the top images of Fig.11, the image pro-
cessing approach works well for the model with a uniform
thickness if we choose a proper kernel size of Gaussian con-
volution. However, it is hard to obtain a good result for the
model with a non-uniform thickness because the fixed ker-
nel size causes under-smoothing (fail to eliminate unwanted
branches) or over-smoothing (skeletal voxels go out of the
object). See Fig.12 for an example of such a problem. In
contrast, our method automatically adjusts the support sizes
of local approximations based on the error analysis Eq. 1;
thus we can obtain a proper smoothing effect adaptively.

To obtain a skeletal mesh from extracted voxels, we have
to apply a surface reconstruction method to connect the cen-
ters of the voxels with polygonal patches. The bottom im-
ages of Fig.11 show triangular meshes obtained from the
skeletal voxels. Since the mesh vertices are located on the
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Figure 10. Skeletal mesh for a thin plate with
a hole. The bumps on the surface of the orig-
inal object do not affect the result extrema.

grid points, the meshes are not smooth enough unlike the
meshes obtained by our method. Further, some of surface
reconstruction methods are fail to reconstruct meshes be-
cause the grid artifact behaves as a large noise.

Compared with the Gaussian convolution of a 3D image,
generating our polynomial approximation is an expensive
task. For example, it takes about ten minutes on a stan-
dard PC for computing the result shown in Fig. 10 while
about three minutes for Fig.11. This is the only drawback
of our method against the non-maximum suppression with
the Gaussian convolution. However, our method does not
require a grid sampling structure to the input volume, thus
it is possible to apply our method to scattered volume sam-
ples (irregularly sampled points with values) which can not
be handled by image processing approaches.

4. Conclusion and Future Work

In this paper, we have proposed an algorithm to extract
the skeletal meshes of CT-scanned thin objects using a set
of approximation functions and an adaptive grid. This al-
gorithm can generate a smooth surface mesh of the skeletal
sheet directly from raw data. Using our data approximation
strategy, the technique enables detection of smooth skeletal
meshes that extend almost to the end of thin objects.

The improvement of crossing-point detection is another
issue. Theoretically speaking, our algorithm can handle
even T-junctions as long as edges that should have a cross-
ing point are detected. But actually we observed that the
derivatives around such parts are very unstable, so detection
for non-manifold parts is still a difficult issue.
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Figure 11. Top: skeletal voxels extracted by
non-maximum suppression (the input CT im-
age is the same as Fig. 10). Bottom: a trian-
gular mesh reconstructed by connecting the
skeletal voxels.

Figure 12. Skeletal voxels extracted by non-
maximum suppression for a model with a
non-uniform thickness (same as the right
model in Fig.8).
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A Tetrahedral mesh generation

The adjacency of supports is used to decide the connec-
tivity of mesh. The supports are spheres as seen in the previ-
ous section, but we raise their dimension by a factor of one
and consider the adjacency of these 4D spheres that have the
same radii and centers as the original 3D spheres. For exam-
ple, an original sphere centered at(cx, cy, cz) ∈ R3 is de-
scribed as(x−cx)2+(y−cy)2+(z−cz)2 = r2. This sphere
will become(x−cx)2+(y−cy)2+(z−cz)2+(u−0)2 = r2.
The centers are the same points as the original ones on the
x, y, z space, and the connectivity is based on the adjacency
of these 4D spheres. From here on in this section, the term
sphere refers to an 4D sphere unless otherwise specified.

First, we select 4 spheres with intersections that are at
most two points in 4D space. If an intersection point is not
included in other spheres, we connect the centers of these 4
spheres to create an tetrahedron. As the centers have a value
of zero in the fourth coordinate, the tetrahedron is in a 3D
space. The triangulations gained by this one-dimensional
increase method are subsets of weighted Delaunay triangu-
lations.

As the vertices came from uniformly sampled grid points
P, in most cases the triangulations have a number of degen-
erate areas. To avoid this degeneracy, in intersection testing
only we use coordinates perturbed0.01 × ri in random di-
rections from the original location rather than the original
coordinates. Good results are obtained using this method.


