Processing of Scanned Geometry Using Spherically Supported Functions NAGAI, Yukie

Spherically supported function f(x)

is an approximation function which is defined as a weighted average of a set of spherically supported approximations $g_i(x)$.

- surface data → signed distance
 volume data → intensity

2D surface data Spherical cover Signed distance field

Scanned geometry

usually contains noise and outliers which may cause serious problems in applications.

Real object

Scanned geometries

Advantages:

- + Adaptive approximation
- + Noise robust
- + Smooth & precise representation
- + High-order approximation

Generating spherically supported functions

Surface Reconstruction

Because of the locality, it is hard to handle data including much amount of noise and outliers only with Surface spherically supported functions. points The robustness is realized as follows:

• Outlier-robust: Graph-cut

Noise robust:

smoothing of local approximations

Surface mesh

Skeletal Structure Extraction

- Maxima of intensity ~ Skeletal structure
- Noise robust and adaptive: using approximated intensity through spherically supported function

2D Volume

Spherical cover Grid for the maxima Skeletal structure extraction