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Abstract

We propose a novel method for smoothing partition of unity (PU) implicit surfaces consisting of sets of non-
conforming linear functions with spherical supports. We derive new discrete differential operators and Laplacian
smoothing using a spherical covering of PU as a grid-like data structure. These new differential operators are
applied to the smoothing of PU implicit surfaces. First, Laplacian smoothing is performed for the vector field
defined by the gradient of the PU implicit surface, which is then updated to reflect the smoothing of the gradient
field. This process achieves a method for noise robust surface reconstruction from scattered points.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling, Curve, surface, solid, and object representations—surface reconstruction, implicit surface,

smoothing

1. Introduction

Surface reconstruction from points sampled on the surface
of an object is a very important process in mechanical engi-
neering and computer graphics. Many algorithms have been
proposed because of the various demands of the relevant ar-
eas of application. Previous algorithms can be classified into
two groups based on their approach: explicit methods and
implicit methods.

Explicit methods. A typical method in this category in-
volves Delaunay-based algorithms, which are intuitive but
need dense sampling with little noise. Recently, a number
of algorithms with noise robustness have appeared (e.g. the
Power Crust [ACKOI] by Amenta et al., the Robust Co-
cone [DGO6] by Dey and Goswami, and the Eigencrust al-
gorithm [KSOO04] by Kolluri et al.). However, even these are
more sensitive to noise than implicit methods. Moreover, al-
gorithms in this category tend to be time-intensive because
of their global nature.

Implicit methods. Nowadays, implicit approaches are a
major force in surface reconstruction because of their sta-
bility with noise and their low computational costs.

With implicit methods, the space is divided into the inside
and outside of the object, and a boundary surface is then de-
fined between the internal and external points. If necessary,
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the surface is approximated using a triangular mesh gener-
ated by a polygonizer such as Marching cubes [LC87], dual
contouring [JLSWO02], and so on. Algorithms in this group
are categorized according to whether the method they are
based on is local or global.

Local implicit methods. The notable advantages of meth-
ods in this category include highly accurate representation,
fast computation and the ability to handle large data sets. Al-
gorithms in this group began with VRIP [CL96], which pro-
vides high-resolution surfaces but struggles to handle mis-
aligned surfaces. Other examples of this approach include al-
gorithms based on moving least squares [ABCO*01, GG07]
and its variants [AK04, OGGO09]. the Multi-level Partition of
Unity implicits (MPU) [OBA*03] proposed by Ohtake et al.
excel in the above advantages.

Local operation offers many merits as outlined above, but
also has some difficulties in handling very low-quality data
such as that with large amounts of noise, outliers, lack of
sampling, and large differences in sampling density. The re-
sulting shapes are sometimes significantly deformed, and
may also have holes and extra components. An example of
the MPU is shown in Fig. 1(b).

Global implicit methods. Global implicit approaches have
the advantage of being able to handle low quality data. Ex-
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(a) )
Figure 1: Scanned data ((a), top) for a terra-cotta Shiisa object((a), bottom); (b) model reconstructed using MPU [OBA*03];
(c¢) Poisson surface reconstruction [KBHO06]; (d) reconstruction using our algorithm.

amples of such methods include the Radial Basis Func-
tion approach [CBC*01] by Carr et al., the integration of
Voronoi diagrams and the variational method [ACSTDO07]
by Alliez et al., the Graph-cut approach by Hornung and
Kobbelt [HKO06], and the finite element method by Sharf et
al. [SLS*07]. The Poisson surface reconstruction technique
proposed by Kazhdan et al. [KBHO06] excels in computa-
tional speed and noise robustness. Unfortunately, however,
the global implicit approach achieves noise robustness at the
cost of high-accuracy reconstruction. The results of the Pois-
son surface reconstruction method shown in Fig. 1 (c) show
this characteristic.

Our approach. Based on the discussions above, we pro-
pose a novel surface reconstruction algorithm that is essen-
tially based on the local implicit method. Unfortunately, as
outlined above, generating a smooth model using only a lo-
cal method is very difficult because the techniques involved
depend entirely on fitting approaches. To combat this, we ac-
complish reconstruction with smooth surfaces by introduc-
ing smoothing terms to the local implicit method.

Smoothing itself is a well-studied subject, and many
methods have been proposed. Among them, Laplacian
smoothing is intuitive and simple, so is followed by many
extensions such as Taubin Smoothing [Tau95], bi-Laplacian
smoothing [KCVS98] by Kobbelt et al., and mean-curvature
flow [DMSB99] by Desbrun et al. Unfortunately, mesh
smoothing cannot change the topology of a mesh, so extra
components in the target mesh (see Fig. 6(b)) are not re-
moved.

With this proposal, we achieve a precise and noise robust
surface reconstruction algorithm that inherits the benefits of

©) (d)

local implicit methods and smoothing. We adopt a parti-
tion of unity implicit as a local implicit method along with
Laplacian smoothing. The partition of unity implicit gener-
ates an implicit function as a weighted average of spherically
supported linear approximation functions. At this point, a
spherically covered space has no differential operators, so
we define such operators in a domain covered by spherical
supports associated with linear functions. Our smoothing is
based on the diffusion of a gradient field, and acts to smooth
local approximations. The main idea is illustrated in Fig. 2.
This smoothing can handle adaptively sampled data, and en-
ables topological change.

The concept is inspired by normal-based smoothing meth-
ods [Tau01, OBS02, CTO03] that smooth normals then move
vertices. A similar method for grids is proposed by Tasdizen
et al. [TWBOO02] based on level set methods [Set99]. The
novelty of our approach lies in its definition of differential
operators on a set of spherical supports for linear functions.

Paper organization. In Section 2, we explain the spherical
cover generated by partition of unity. Then in Section 3, dif-
ferential operators defined on the spherical cover are derived.
In Section 4, we apply these operators to smooth PU implicit
functions. The preservation of detail and an overview of our
algorithm are outlined in the same section. Section 5 presents
our experimental results and discusses them and Section 6
concludes the paper and outlines future work.

2. Partition of Unity
In this section, we describe the details of a spherical cover

made using the PU method. The structure of such a spherical
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Figure 2: Left: Isosurfaces generated using PU. Isosur-
faces of local approximations are shown with dotted lines.
Right: Isosurfaces after the smoothing of local approxima-
tions.

cover is described in Section 2.1, and its method of genera-
tion is explained in Section 2.2.

2.1. Spherical Cover

Given a set of points {p j} sampled from a surface associ-
ated with oriented normals {n}, we approximate the surface
with the zero-level surface of signed distance function f(x),
as shown in the image on the left of Fig. 3. A domain includ-
ing all the sampling points is covered by a set of spheres as
shown in the image on the right of Fig. 3.

Spherical support s; is defined by center ¢; and radius r;.
s; has the implicit linear function g;(x), whose support is s;
itself. g;(x) is represented as coefficient vector o;, and con-
stant term P; as g;(x) = o; - (x — ¢;) + B;. The value of g;(x)
locally approximates the signed distance of point x inside
s; from the surface. Isosurface g;(x) = 0 therefore approxi-
mates the sampling points inside s;. g;(x) is obtained by least
square fitting for sampling points inside s;, then @; and 3; are

described as
Bi— o Yjwi(p;)(ci—p;) .
riwi(p;)
M
These are the weighted averages of normals and coordinates

of sampling points inside s;. In this work, weighting function
wi(x) is the second-degree B-spline by (3||x — ¢;||/2r;).

Yijwi(pj)n;

oj=-—— I 1
l X wi(pj)n;ll

Weighted average f(x) of local approximations {g;(x)}
represents the signed distance from arbitrary point x inside
the domain to the surface of the object.

_ Yiwi(x)gi(x)
Yiwi(x)
This is the algorithm known as Partition of Unity, which is

hereafter abbreviated as PU. A specific process to determine
a spherical covering is described in Section 2.2.

f(x) 2
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Figure 3: An example of PU in 2D. Left: The scalar field
determined by f(x) and the reconstructed image (black line).
Values of f(x) indicated in red are high, and those in blue
are low. Right: The supports of local approximations {g;(x) }
are indicated with pink circles. The blue dots represent the
centers of supports, and input points are shown with black
dots.

Figure 4: Sphere expansion. Left: the spherical cover
generated using MPU. The red sphere is to be expanded.
Right: after expansion. The spheres inside the red sphere
(shown in purple) are eliminated.

2.2. Generation of Initial Spherical Cover

Here we outline the generation of a spherical cover for a
domain including sampling points {p j}- We assume that the
domain is rescaled so that the length of the longest edge of
the bounding box of {p;} is one. In this step, a spherical
cover is generated essentially based on MPU, but the number
of spheres is lower than the result produced by MPU itself.

In a similar way to MPU, the generation process begins
by dividing the domain with an adaptive octree measuring
local approximation errors. An octant is assigned a spheri-
cal support s; whose center ¢; is the center of the octant and
whose radius r; is 0.75 times the length of the octant’s diago-
nal. Then, g;(x) is determined by (1). Let the approximation
error of an octant be the maximum value of [g(p;)| for sam-
pling points inside the corresponding support. Each octant
is divided recursively until its approximation error does not
exceed user-specified tolerance €.

After this step, we modify the resulting spherical cover
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by expanding the radii of randomly selected spheres as long
as their local approximation errors do not exceed €. Spheres
completely included inside an expanded sphere are elimi-
nated. In Fig.4, a 2D example shows the effect of this ex-
pansion, which helps to reduce the number of spheres. In
our experiments, the final number of spheres is about half
the number of octants.

After spherical covering using PU, to improve the
smoothness of the reconstructed surface, implicit function
f(x) is smoothed by iteratively updating {e;} and {B;}.
New differential operators suitable for a spherical cover are
defined in the next section.

3. Differential Operators for Partition of Unity

For smooth shape representation, Laplacian smoothing is
used for local approximation functions. Since we are work-
ing on a set of spherical supports, using discrete differential
operators specialized for a spherical cover is preferred than
using general differential operators for a traditional orthogo-
nal grid or a tetrahedral mesh [TLHDO3]. Unfortunately, no
differential operators for PU have yet been proposed. Hence,
in this section we aim to define differential operators for
a domain covered by a set of supports associated by linear
functions.

The following calculations are performed only at the cen-
ters of spherical supports, so new operators are defined at
their centers. To distinguish our discrete operators from tra-
ditional continuous ones, hereafter we denote new operators
for centers as Grad(+), Div(-) and Lap(+) corresponding to
the traditional V(+), V- () and A(-), respectively.

We assume that each spherical support s; is assigned a
constant vector v;. Then, the vector at point x is evaluated
using PU as follows:

Yiwi (x)vi
Yiwi(x)

Let us define Div(v;) as the average integration of V - v(x)
inside s;:

3

v(x) =

anr

T’Div (vi) = V- v(x)dx. 4)

xEs;
By the divergence theorem, the right side of (4) is repre-
sented as an integration over sphere 9s;:

3

Ty . N .
i Div (v) = /x V) nx)dx, )

where n(x) is a unit normal at point x on the sphere. Here,
we define a neighbor of s; as a support intersecting with s;.
Let §; ; be the part of ds; inside a neighbor s; (indicated by
the green dotted line in Fig. 5, which shows an illustration of
a 2D version). For simplicity, we assume that §; ; is covered
only by s; and s;, then v(x) in (5) is replaced with v;. Now,

Figure 5: Left: intersecting 2D spheres (considering the dif-
fusion at center c; of support s;). The orange lines are local
approximations, and the blue arrows are their normals. §; ;
is indicated by the green dotted line, and the intersection disk
with area D; j is indicated by the solid green line. Right: an
example of the adaptive spherical cover in 3D.

the left side of equation (5) is approximated as follows:

Y fxes dx Y /xes vih ©

The value of this approximated area is greater than the true
value of 4nri2 when neighbors overlap each other. Denom-
inator fxe&,-_,» dx on the right-hand side normalizes this ap-
proximated area.

3
T;r’ Div(v;) ~

Calculating the integrals of (6), we obtain the divergence
at c¢;

Div(v;) = D; J 7
)= 5 TP e e
In the above equation, S; =} j fxeﬁ,-,- dx and D; j is the area
of the disk whose boundary is the circle where ds; and Js;
intersect. We define intersection disk as such a disk (see
Fig. 5). For simpler notation, by introducing
D; ;
llej—eill”

6ij = ®)

equation (7) can be rewritten as

Z oijvi-(cj—ci). 9)

This is an isotropic operator, and we introduce an anisotropic
operator in Section 4.3 by multiplying ¢; ; by an anisotropic
factor.

Div(v;) =

With this new divergence operator, we also obtain the
Laplacian operator through Div(Grad(v;)) = Lap(v;) in a
way similar to the continuous form V - V(v;) = A(v;). First,
by replacing v with Vv in (7), the equation can be repre-
sented as

3

Div(Vv;) = S;
1

Z 0,/ Vv, (c;—¢i). (10)

Let us define operator Grad(v;) as the first-order Taylor
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(a) (b)
Figure 6: (a) Noisy data points; (b) initial zero-level surface approximated using PU; (c) results of isotropic smoothing by (13)
and (16); (d) results of the anisotropic Laplacian smoothing by (17). The sharp features are well preserved.

expansion at ¢ j, which is v; = v; 4+ Grad(v;) - (¢; — c;). Then,
(10) is expressed as

3
Lap(v;) = Ezjq)i,‘,-(vj—vi). (1

As Lap(f(c;)) = Div(Grad(f(c;))), the Laplacian for
function f(c;) is derived in the same manner. The Laplacian
of f(c;) on the domain covered by spherical supports is

Lap(f(e)) = - X, 00,(F(e)) ~ f(e). (12

The proposed differential operators seem to be applica-
ble to PU consisting of any type of local function. However,
these operators are limited to use in cases where local func-
tions are linear, since we simplify gradients by assuming that
they are constant in each support.

Approximation with linear local functions is sufficient for
surface reconstruction because its output takes the form of
a polygonal mesh. Using local linear approximations tends
to generate more supports than the quadratic approximations
of MPU [OBA*03], but linear approximation makes the al-
gorithm more noise robust, while high-order approximations
are more noise-sensitive.

4. Smoothing of Partition of Unity

After local approximations are obtained by the spherical
covering, the gradient field {v;} of f(x) is smoothed to give
smoother surface representation. Each vector v; is smoothed
by Laplacian smoothing with the new discrete Laplacian op-
erators. Then, each local approximation is updated to have
the smoothed vector as its gradient.

Here we show an overview of each step of iterative PU
smoothing.

1. Initialize the vector field with the continuous gradient of
f(x): setv; =V f(c;) for each sphere center ¢;

2. Update {@;}: smooth v; by Laplacian smoothing. Set
updated vector 9; to &;

(© 2009 The Author(s)
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3. Update {B;}: calculate B; so that 9; = Grad (g;(c;)). Up-
date B; to B;

The result of this smoothing is shown in Fig. 6. The details
of Steps 2 and 3 are described in Section 4.1 and 4.2, respec-
tively.

4.1. Smoothing of Gradient Field

For vector v;, the new smoothed vector ¥; is obtained by
solving Lap(v;) = 0. It derives the smoothed vector

Y0ivj
Yidij

b= (13)

4.2. Update of Local Functions

In this step, we update {g(x)} with equation (15) reflecting
the smoothing of {v;}. In the previous step, the update of o;
was performed with &; = ¥;, so in this step, B; (the constant
term of g;(x)) is updated. Our aim is equivalent to updating
f(x) so that it satisfies

Grad (f(c;)) = ¥;. (14)

For simple computation, here we introduce the assump-
tion of f(¢;) =~ gi(¢;) = P;. This implies that the center of a
sphere is not included in other spheres. We observed good
results for all examples in this paper obtained under this as-
sumption.

By calculating the divergence for the both sides of equa-
tion (14), we obtain the weak solution

Lap (f(¢i)) = Div (¥;). (15)
By solving equation (15), B; is updated to

_ L%, (aj'(cifcj)JFBj).

P Y0

(16)
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Figure 7: The effects of fitting terms and convergence. Top-
left: The initial zero-level using PU; top-right: results after
five iterations without fitting terms; bottom-left: results after
five iterations with fitting terms; bottom-right: results after
twenty iterations with fitting terms.

4.3. Anisotropic Laplacian Smoothing

To preserve highly curved regions, the anisotropy factor pro-
posed in [PSM94] is introduced into the smoothing of v
(equation (13)) and the update of f(x) (equation (16)). We
propose the use of the anisotropic factor

1

- 17
1+6§j an

Vij =
where 0; ; is the angle between v; and v;. The weighting
function ¢; ; in equations (13) and (16) is replaced with
i, jWi. -

An example of the effect of this anisotropic factor ; ; is
shown in Fig. 6. For noisy points (a), results obtained using
PU (b), isotropic smoothing (c) and anisotropic smoothing
(d) are presented. By introducing the anisotropy factor (17),
the sharp edges and corners are preserved.

4.4. Detail Preservation in Smoothing

In surface reconstruction, preserving detail is just as impor-
tant as smooth representation. To avoid the loss of detail by
oversmoothing, we introduce terms that make the approx-
imated surface fit the sampling points. The effects of this
modification are shown in Fig. 7. After applying several iter-
ations of PU smoothing without the fitting terms, the details

are smoothed out, as shown in the top-right image in Fig. 7.
On the other hand, the result with the fitting terms shown in
the bottom-left image in Fig. 7 demonstrates that the details
are well represented.

By introducing a fitting term to the smoothing of v, v
is obtained as the minimizer of the following minimization
problem:

IR
[[Lap (9 )|
+ 2 Y wi(py) [0 —myl|* — min.  (18)
k
Coefficient A, is a sufficiently large number. We set the value

at about 10”. o is the confidence level of p; (details below).
The minimizer of this problem is

v = ((3/riSi)ZZj¢i,ij ¢i,jvj+7»nzk6kwi(l’k)"k>
/((3/7i5i)2(zj¢i,j)2+7mzk6kwi(l’k)) - (19)

In the same way, the update of f(x) (equation (14)) be-
comes

(Lap ( f(e;)) — Div (%))
+2p Y ouwi(py)gi (py) — min. (20)
k

Coefficient A, is set at a sufficiently large value, e.g. 10°.
The minimizer of (20) is

Bi = ((3/"isi)2qu)i,jzjq)i,j(aj'(Ci—Cj)-i-Bj)
+Ap0; - (Zk owi(pi)(ci _Pk))>
/((3/risi)2(zj¢i,j)2+7\pzk6kwi(pk)> - 2D

Confidence level o indicates the reliability of a sampling
point p,. In cases where confidence values are obtained with
a scanner, using these values is one solution. In cases where
such values are not available, we assign confidence value G
as defined below for each sampling point p:

_ Liwilp)u
Yiwi(pp)

T; represents the distribution of sampling points inside sup-
port s;. The definition of 1; is

T; = exp (—20),<2> (23)

Oy (22)

where ; is the angle between eigenvector N; of the min-
imum eigenvalue of PCA for the sampling points inside s;
and the vector from centroid G; of the sampling points in-
side s; to center ¢; of s; (see Fig. 8).

G, becomes smaller when p;, is near an area with a lack
of sampling. oy is based on the confidence of supports {s;}
including p;.

When the sampling point distribution is uniform (as in the

(© 2009 The Author(s)
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part on the left of Fig. 8), vector N; and ¢ — G; have almost
the same direction, and the value of t; increases. If the sam-
pling density changes inside s;, their directions are different
and t; decreases. The distribution of the value of G, is indi-
cated in Fig. 9. Note that outliers are detected.

Moreover, the fitting terms help smoothing to converge
quickly. It can be seen that the results from five iterations of
smoothing (the bottom-left image in Fig.7) and those from
twenty iterations (the bottom-right image in Fig. 7 ) show no
notable difference.

Figure 8: Examples of 2D spheres with points (black dots)
uniformly sampled (left) and non-uniformly sampled (right).
The line approximated using PCA for the sampling points
is shown in dark green, and its normal N; is shown with a
light green arrow. The centroid of the sampling points, G, is
indicated with a large gray point.

4.5. Algorithm Summary
Here we summarize the whole algorithm as follows.

1. Approximate the surface using PU

2. Evaluate the confidence of the sampling points
3. Iteratively apply PU smoothing preserving detail
4. Polygonize the zero-level surface

Step 1 has already been explained in Section 2, and Steps 2
and 3 are outlined in Section4.4. The number of the itera-
tions in Step 3 is five in our experiments for all models. In
the last step, we polygonize the zero-level surface using the
SurfaceNets [Gib98] with uniform sampling around only the
zero-level surface as proposed in [Blo88]. We set use a sam-
pling point with a high confidence value as a seed point for
detecting the zero-level surface.

5. Results and Discussion

Parameter setting. All input data in this paper (except
Fig.6, 11, and 15) are noisy raw scanned data. All param-
eters except € are fixed unless the settings are described. The
only free parameter required by the proposed algorithm is
approximation error tolerance €, which depends on the noise
level of the scanning device. A comparison of results with
different values of € is shown in Fig. 10 (the details of € are
described in Section 2.2).

(© 2009 The Author(s)
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Figure 9: Confidence levels are indicated with coloring;
blue is high (reliable) and red is low (unreliable). Low con-
fidence values are assigned to outliers.

Figure 10: The reconstructed mesh with different values of
€. From left to right, e = 1.0x 1072,5.0x 1073,2.5x 103,
and 1.25 x 1072,

Noise robustness. The robustness for noise is demonstrated
in Fig. 11. The sampling points are obtained from a noisy
mesh. The noise level on the right model is twice as large as
that on the left model. The reconstructed meshes are topo-
logically correct even for data with large amount of noise.

In Fig. 12, the robustness for normal noise is demon-
strated. For data with normals randomly rotated by 30°, our
approach succeeded in reconstruction (b). For a rotation an-
gle of 60°, the reconstructed model is affected in terms of
smoothness (d). By setting A, to zero, even for such cases, a
smooth surface is obtained (e).

Performance. Timing results are reported in the Table 1. In
order to perform PU smoothing efficiently, we construct and
store the graph as an adjacency list data structure.

However, following our observation, the average of de-
grees of a sphere intersection graph is about 100, which
makes processing large data sets difficult. According to our
experiments, reducing the degree by shrinking the radii of
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Figure 11: Noise robustness. The sampling points are ob-
tained from a mesh added Gaussian noise. The value of the
standard deviation of the noise on the left/right model is a
quarter/half of the averaged edge-lengths.

Figure 12: Normal noise robustness. (a) Data with normals
rotated randomly by 30°; (b) reconstructed model for (a);
(c) data with normals rotated randomly by 60°; (d) results
for (c); (e) results for (c) with A, = 0.

supports to 0.7 times the original radii reduce the com-
putational time and space. The average of degree after
this shrinking is about 40. The results obtained with this
shrinking are no different from those without shrinking.
This shrinking is only for constructing a sphere intersection
graph, so we use the original radii in all the other process
including the calculation of ¢; ;.

# € # Time [min:sec] Peak #
Model | pts. (x1073) supps. init. smooth. poly. RAM tris.
Bunny |362K 2.5 176K 0:18 0:19 0:14 74M 315K
Arma. [23M 1.0 7.35M 5:42 36:21 3:49 3.24G3.30M

Buddha [3.2M 2.5 540K 2:05 2:26 0:58 234M 1.07M

Buddha [3.2M 1.25 2.94M 3:41 13:35 1:08 1.23G 1.08M

Table 1: Computational time and performance. From left to
right: the number of sampling points, value of €, the number
of supports, computation time for initialization of PU, for
smoothing, and for polygonization, the maximum memory
space our algorithm used, and the number of triangles of
the result mesh. Arma. is an abbreviation of Armadillo.

Comparison. We compared our results with MPU
[OBA*03] and Poisson surface reconstruction [KBHO06]
for a Shiisa model (see Fig.1). In the MPU results, peak
stretches and extra components appear around the tail.
Poisson surface reconstruction gives a mesh in which detail

is lost by the smoothing effect. On the other hand, the
proposed method generates a smooth mesh with the detail
well preserved (see the close-ups in the lower columns of
Fig. 1).

Another comparison for a large data set with Poisson sur-
face reconstruction is shown in Fig. 13. The reason that Pois-
son surface reconstruction is selected as a comparative algo-
rithm is that it has excellent reconstruction capabilities, and
the software required is freely available. The parameters for
Poisson surface reconstruction are 11 for the level of the oc-
tree, and for ours, € = 1.0 x 10~ In reconstruction using
our method, detail is preserved well, e.g. the bumps in the
hand. This is thought to be because the proposed algorithm
uses first-order approximation, while Poisson surface recon-
struction uses zeroth-order approximation.

Another example is shown in Fig. 14. The surface is grad-
ually sparsely sampled. The results of Poisson surface recon-
struction shrink near the tail, but the results from proposed
method can express a rough shape of the tail.

One of the drawbacks of our method is that reconstructed
surfaces tend to extend in the tangential directions. See the
tail of the dragon in Fig. 14. A more clear comparison of
this property is shown in Fig. 15. This is caused by diffusion
of normals in our method. In contrast, Poisson surface re-
construction solves Laplacian equation on the region where
sampling is missing. Thus the missing parts are filled with
minimal surfaces.

Another drawback is that the proposed method is three—
five times more time-consuming than that of the Poisson sur-
face reconstruction. However, our PU smoothing based on
iterative averaging can be easily parallelized by using multi-
core CPU.

6. Conclusion

We derived new differential operators for a spherically cov-
ered domain. As a related application, detail-preserving
noise robust surface reconstruction algorithm is proposed
based on a diffusion technique.

The local approximations in this work are linear func-
tions. Changing the primitive functions to be quadratic and
cubic functions is a future task to be performed, and we also
plan to represent sharp edges. Anisotropic smoothing pre-
serves edges, but more precise representation is needed in
some applications. Other possible applications include vol-
ume processing and the smoothing of more attributed vectors
such as 4D vectors and texture data.
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