002100 0000

Processing of Scanned Geometry
Using Spherically Supported Functions

Juobgbotdbootdboodooubd

oot o0Oodoodod

oot bbb oboouogod
37-077163

NAGAL Yukie
0o ogg




Copyright (© 2010, NAGAI, Yukie.



Abstract

Shape representation with spherically supported functions attracts attention in geome-
try processing recently because of its strong flexibility and ability of representing complex
objects. Some geometry processings use differential operators however, spherically sup-
ported functions have no proper differential operator.

This thesis derives the discrete differential operators on a set of spherically supported
functions: the gradient, divergence and Laplacian operators. This thesis develops also
two instances of improved ability of representation of spherically supported functions with
discrete differential operators: algorithm for surface reconstruction from a set of points
and skeletal structure extraction from a volumetric data. For surface reconstruction,
smoothing the spherically supported functions using the discrete differential operators
achieves smooth and precise surfaces even from heavily noisy sampling points. In order to
realize outlier-robustness, applying Graph-cut before smoothing is proposed. In addition,
a useful measure of reliability of a sampling point is proposed.

The proposed algorithm for skeletal structure extraction is based on an observation that
the skeletal structure is very close to the maxima of intensity. In this research, intensity
is approximated with spherically supported functions. The evaluation of the maxima of
the approximated intensity is performed utilizing the discrete differential operators. As a
more noise-robust extension based on the smoothing of the spherically supported functions

are proposed.
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Chapter 1

Introduction

1.1 Motivation

In recent years, geometry processing obtains higher abilities to represent shapes of 3D
real objects as the rapid developing of scanning devices as laser scanners, CT-scanning
methods, MRI and so on. Fig.1.1 and Fig. 1.2 show examples of models scanned using a

laser scanner and an X-ray CT scanner respectively.

Fig. 1.1. Shape acquisition with a laser scanner.
Left: original 3D object. Middle: scanned data, a set of points. Right: mesh
representation.

Fig. 1.2. Shape acquisition with an X-ray CT scanner.
Left: original 3D object. Middle: a horizontal slice of CT-scanned image.
Right: isosurface of CT-scanned image.
The left and the center images are courtesy of the Stanford Computer Graphics
Laboratory.
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Geometry processing shows progress in many attractive applications such as visualiza-
tion, physical analysis, and processing shapes. These applications play important roles
in wide areas involving computer graphics, industrial design, reverse engineering, medi-
cal engineering, and so on. In such applications, shapes are generally represented using
meshes. As an example in Fig. 1.3, mesh is a shape representation defined by the combi-
nation of positions and connectivity of points. Currently many applications adopt mesh

as a standard shape representation.

.
&

Fig. 1.3. Mesh of a complicated object.

Although scanning technology achieves high-level of accuracy than before, shape recon-
struction methods require higher quality scanned data to achieve quality reconstruction.
If the quality of scanned data are not enough, reconstructed shapes may be drastically
different from the original shape. Fig.1.4 shows examples of low-quality scanned data
and reconstructed mesh. Low-quality data is data which includes some problematic parts
as noise and gaps, details in Chap.2.1.1. From such data, meshes with some artifacts
may be generated as the image on the right. It has some undesired surfaces extending
forward from the head, the bird on the girl’s hand, and her knee where the scanned points
are wrongly aligned or not obtained as shown in the center image. Of course wrongly
reconstructed surfaces should not be used in applications because it is clear that they will
cause errors in geometry operations.

In these days, another shape representation which uses approximation functions of a
set of points gets a lot of attention. This is a representation, for points obtained from a
surface, expressing the shape of the object with a iso-contour of an scalar field defined
through a function which is generated using scanned points. Or, for volumetric data, this
method approximates the attribute values (e.g. intensities) equipped with each points
with values of an approximating function.

Fig. 1.5 shows an example of implicit representation for a surface-scanned data. This

shows a result of reconstruction for points scanned from a surface of a 2D object. The
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Fig. 1.4. Mesh generated from low-quality data.
Left: low-quality scanned data.
Center: close-up of the face part of the left image.
Right: mesh generated from the points shown in the left image.

left image shows the set of scanned points. The scalar field obtained from these points
are indicated in the right image. Color indicates a high value with red and low with blue.

The iso-contour representing the object’s shape is drawn with a black line.
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Fig. 1.5. Implicit shape representation.
Left: points scanned from an object. Right: a scalar field and an iso-contour (a
black line) representing the object’s shape.

Among many methods to generate scalar fields, we especially focus on a technique
covering a space which includes scanned points with a set of spheres equipped with local
functions. The supports of the local functions are corresponding spheres themselves. In
this method, an approximating function is obtained with blending the local functions.

Fig. 1.6 is a set of spheres for the points from a surface in Fig. 1.5. Spherical supports and
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those centers are shown with pink circles and blue points respectively.

Fig. 1.6. Spherical cover for the scanned points in the left image of Fig. 1.5.

Spherically supported functions have high abilities to shape representation: smooth
surfaces, sharp features (edges and corners, see Fig. 1.7). It can approximate attributes of
volume models. Moreover, shape representation using spherically supported functions is
also very suitable for the operations that is hard for mesh representation. Some operations
as blending and set operation are difficult to be operated on mesh, but they can easily

operated for models represented with spherically supported functions.

S VAVA VAN K7
SESTN L

g N
ZAN = AN AV
' 3 — N NC

£ 2

<
N Z

=1

W | =

)

Fig. 1.7. Sharp features. Left: corner. Right: edge.

As mentioned above, the de-facto standard for shape representation in some application
areas is mesh, and if needed, models represented with spherically supported functions can
be easily converted to meshes with the aid of a method to polygonize an isosurface. The
famous methods are Marching Cubes [LC87] and dual contouring [JLSWO02]. The iso-
contour in Fig. 1.5 is visualized using mesh generated with such a polygonization method.

Geometry processings in applications often encounter difficulties. Some of such process-
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ings, for instance blending and set operations mentioned above, can be effectively handled
using representation with spherically supported functions rather than mesh. These ad-
vantages have been recognized in several application areas, and spherically supported
functions are gradually being adopted.

As stated above, spherically supported functions are excellent method as long as these
local approximations represent an original shape well. Sometimes good approximations
cannot be available because of problems of scanned data. We overcome these situations
through smoothing local approximation functions. Smoothing requires smoothing opera-
tor (the Laplacian). Unfortunately, there is no proper differential operators on spherically
supported functions. This is the motivation of our derivation of differential operators. In
this thesis, we enhance the spherically supported functions through deriving differential
operators which are discretized in terms of spheres.

Again from the point of applications, until now, because of the absence of proper dis-
crete differential operators, there are some processings that may not be handled well with
spherically supported functions. In these cases, utilizing the traditional and continuous
differential operators is one solution. Now our discrete differential operators have ad-
vantages over such alternative solutions. In order to realize these advantages, we also
developed two application algorithms: surface reconstruction and skeletal mesh extrac-

tion.

1.2 Problem Setting

Deriving Differential Operators. Differential operators are essential operators for every
representation in order to analyze geometrical characteristics of objects. Unfortunately,
spherically supported functions had no unique differential operators. So deriving differen-
tial operators specified for a set of spherically supported functions is worthful. The fact
that required final models are generally mesh indicates that assuming supported func-
tions are linear is natural. So we derive the differential operators on a set of spherically

supported functions in the case these are linear functions.

Surface Reconstruction. Surface reconstruction is a process generating a mesh from a set of
points. It is much in demand in many application areas so a number of algorithms are pro-
posed. Some explicit methods involving Delaunay based methods such as crust [ABK98]
and Tight cocone [DGO03] adopt input points as vertices of mesh, so generated mesh is af-
fected by the quality of input points. Generally input points are scanned data which may
include some problems such as much amount of noise and lack of sampling. On the other

hand, shape representation with an implicit method which approximates input points can
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counteract to problems of scanned data. Ability to treat scanned data directly is a great
advantage of implicit methods while explicit methods may need preprocessing as denois-
ing; cleaning scanned data through removing noises and differences of sampling densities.
Among of implicit methods, spherically supported functions can represent details well. So
our aim is generate a approximated shape of an object robustly to low-quality data on
the basis of implicit method.

As denoted in the previous section, shape representation with spherically supported
functions is different from mesh. If applications need mesh, obtained shape models can

be converted into meshes via a polygonizing method.

Skeletal Structure Extraction. Skeletal structure is a useful structure to understand intu-
itively the shape of an object. There are many kinds of representation of skeletal structure,
for instance, a set of voxels, 1D curve, 2D sheet, and mixture of them. In this thesis, we
especially focus on 2D sheet-like structure. See Fig. 1.8, an example of a 2D skeletal sheet

for an industrial object.

-,
-

skeletal
mesh

Fig. 1.8. Industrial object and its skeletal sheet.

Major methods for extracting such a skeletal structure are Voronoi based methods.
They take surfaces of objects as input. But in many cases, data of industrial objects
are obtained as volumetrically scanned data. So algorithm which can directly deal with
volumetric data are useful. Since scanned data typically has problems involving noise,

algorithm is demanded to generate smooth skeletal structure from scanned data.
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1.3 Contributions

In this thesis, the discrete differential operators on spherically covered functions are
proposed. In addition, as applications of spherically covered functions extended with
differential operators, algorithms for surface reconstruction and extraction of 2D skeletal
structure are presented.

These two application algorithms achieve noise robustness and generation of smooth

structures.

1.3.1 Differential Operators on Spherically Covered Functions

For the existing spherically supported functions, we derived discrete differential opera-
tors [NOS09]: the divergence and Laplacian operators of a vector field, and the Laplacian
operator of a scalar field. They are defined on the centers of supports where various esti-
mations are performed. In the derivation of the operators, three conditions are assumed:
spherically supported functions are linear, each support has a constant vector, and bound-
ary of each support are discretely approximated with intersections with incident supports.

Proposed operators are very fundamental, so they can be applied into various application
areas where differential operators are useful. Applications in surface reconstruction and

skeletal mesh extractions are proposed in this thesis.

1.3.2 Surface Reconstruction

An algorithm to approximate the surface of an object from points on the surface of the
object is developed on the basis of extended spherically supported functions. Generated
surface is converted to a triangular surface mesh with the aid of an existing polygoniza-
tion method. This algorithm has an advantage to handling a data with outliers, lack of
samplings. Generated surface is smooth and represents fine features of an object.

These advantages are achieved by combination of global and local approaches: spheri-
cally covered functions and Graph-cut.

Moreover, smoothing extended spherically supported functions using differential oper-
ators defined in this thesis is also combined. This smoothing achieves noise-robustness
and more smooth representation. In the smoothing process, the way to make smoothing
anisotropic is developed. This method enable smooth representation and preservation of

highly-curved regions. Moreover, a measure of confidence of points are proposed.
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1.3.3 Skeletal Structure Extraction

An algorithm to generate a surface mesh representing the 2D sheet-like skeletal structure
of an object directly from volumetric data such as CT-scanned data is developed. In our
interest, target object consists of one material thin plates as structures typically found in
industrial engineering.

Our approach is based on the observation that the maxima of intensity and skeletal
structure of our target object are resembled each other. First, the intensity of scanned
data is approximated with spherically supported functions, then the maxima of inten-
sity are estimated. As a result of approximation approach, noise-robustness and smooth
skeletal structure generation are achieved. Since using the spherical supports as an in-
termediate structure, an adaptive surface mesh can be generated. Moreover, obtained
skeletal structure reaches to the boundary of objects. This characteristic is suitable for
some industrial applications.

In addition, to improve the robustness in maxima estimation, we propose to replace
the spherically supported functions with extended ones, and smooth the approximation

functions with the discrete differential operators.

1.4 Thesis Organization

First in Chapter 2, basic knowledge about shape representation are denoted. Then
previous works related to the subjects dealt with in this thesis are introduced. Next, the
definition of spherical supported functions and generation methods of them are explained
in Chapter 3. And then Chapter 4 derives the differential operators on a set of spheri-
cal supported functions. The following chapters are devoted to applications of spherical
supported functions enhanced with discrete differential operators. Chapter 5 provides an
algorithm for surface reconstruction from points scanned from surfaces. This algorithm
includes smoothing process realized with the discrete differential operators. Chapter 6
introduces a skeletal structure generation from volumetric data. In order to further im-
prove skeletal structure’s quality, applying the discrete differential operators is proposed.
Finally Chapter 7 concludes this thesis and suggests future directions. Fig. 1.9 visualizes

the organization of this thesis.



1.4 Thesis Organization

Surface data Volume data

Chapter 3
Covering a space with spherically supported functions

Chapter 6
Skeletal structure extraction

Chapter 4
Derivation of discrete differential operators

Chapter 5
Surface reconstruction

Fig. 1.9. The organization of this thesis.
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Chapter 2

Background and Related Work

In this chapter, fundamental knowledge about shape representation which we concern
with throughout this thesis is provided in the first section. In the next section, previous

works related to the topics discussed in this thesis are introduced.

2.1 Shape Representation

In this section, fundamental knowledge about measured data is described. It is followed
by an introduction of mesh: the most common shape representation for scanned data in

areas such as computer graphics and industrial engineering.

2.1.1 Measured Data

Fig. 2.1. Real object and scanned data.

Recently, as a method to obtain a shape of a real 3D object, measuring the target object
directly using scanning devices is a common way. Laser scanners, x-ray CT scanners and
MRI scanners are examples of such devices. Measured points obtained with a measuring
method are generally referred to as sampling points.

In the case only shape of a target object is needed, it is enough to scan the surface
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of the object. In this case, using scanning devices such as a laser scanner is a major
solution. Scanned data obtained with a laser scanner consists of a set of sampling points
from surface of the object. A set of sampling points is specially called as a point cloud.

Each point of the point cloud {p;} has its coordinate
{pi} = {(@i, i, z:)}- (2.1)

As an example of scanning a surface, sampling points obtained with a laser scanning for
a terra-cotta Shiisa are shown in Fig. 2.1.

In many cases a sampling point may have additional attributes such as a normal, inten-
sity, color, and confidence of scanning. Among them, normal is often equipped (or easily
obtained with a simple calculation as introduced in [HDD'92]) and plays important roles
in many applications processing sampling points. Ideally speaking, normal equipped with
a sampling point should be coincident with a normal at the corresponding point on the
surface of the object. Confidence is a value indicating the accuracy of the scanning at
each scanned point [CL96]. For instance, in a case scanning with a laser scanner, accuracy
of points near highly curved regions or high specular regions tend to be low.

If the inner structure of an object is needed, required structure can be obtained as
a volumetric data with using of X-ray computed tomography (CT) scanners or MRI
scanners. Each sampling point of volumetric data is composed of coordinates and values
like intensities. Volumetric data are, for instance, used for analyses of objects with multi
material and medical engineering. Fig. 2.2 shows three slices of a CT-scanned data of an
industrial object. Points with high intensities are indicated by white points while those

with low intensities black.

Fig. 2.2. Real object and three slices of CT-scanned data.

Unfortunately any type of scanned data generally includes some problematic parts.
Noise, outliers, lack of sampling, and differences in density of sampling are typical prob-
lematic parts. Fig2.3 shows examples of these problems. (a) shows noise, small oscilla-

tion, observed in an ear. Outlier, (b), is an extraordinary point far from surface. It is
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caused by specular reflection of laser beam for instance. Area where laser beam cannot
reach exists because of obstacles or shape of target object, and thus lack of sampling
areas arise in scanned data. In Fig2.3, this lack is observed in the mouth, (¢). Scanned
data of an object is generally obtained with aligning and merging several scanned data
from distinct directions. Because of this iterative scanning, sampling density of an area
which is scanned in several times may be dense than that of areas with single scanning.
Thus scanned data has differences in density of sampling. The image in Fig2.3 (d)
shows the foot with large differences in sampling density. The quality of scanned data is
determined according to the amount of such problematic parts. For instance, data with
little amount of noise is high quality, in contrast data with many outliers, great amount
of noise, many lack of sampling is considered as low quality.

In some applications, low quality scanned data causes many serious problems. One
example of such a failure caused in generating a shape model directly from scanned data
is displayed in Fig. 2.4. As the close-ups in the bottom row showing, some extra surfaces
appear in the back of the head, the shape of the mouth is largely deformed because of the
absence of sampling points, and the right forefoot cannot be reconstructed correctly as a

result of different sampling densities.

Fig. 2.3. Problems in scanned data.
(a) Noise. (b) Outliers. (c) Lack of sampling. (d) Differences in sampling
density.

2.1.2 Shape Model

After scanning, measured data is converted to other shape representations which are
more common ones in each application. In order to handle object shapes with computer
effectively, many representations have been proposed and used. One of the most common

representation is mesh, which is explained in the following.

Mesh
Because of its high ability of shape representation, mesh is adopted as a general repre-

sentation method in areas involving science, engineering and industry. More specifically,
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Fig. 2.4. Problems in surface reconstruction caused by low quality of scanned data.

computer graphics, computer aided design (CAD), and computer aided engineering (CAE)
are instances. Formally, mesh M is a shape representation based on geometrical feature

V' and topological feature T
M = (V,T). (2.2)

Specifically, V is realized as coordinates of points and 7" means the connectivity of points.
In terms of mesh, a point is called vertex. Connectivity is composed of connection
between two vertices which defines an edge, and connection between more than three
vertices which defines a face.

One of most common mesh is surface mesh which is a 2-manifold mesh in 3D space.
Surface mesh whose all faces are triangle is referred to a triangular mesh. An example
of a triangular mesh is in Fig. 2.5.

Another major type of mesh is volume mesh which fills a 3D region with a set of
polyhedrons. Volume mesh whose all of the elements are tetrahedra is referred as a
tetrahedral mesh, see an example in Fig. 2.6.

As shape representations mainly we treat triangular mesh and tetrahedral mesh in
addition to spherically supported functions explained in the following chapter. In this

thesis these two kinds of mesh work as destination or intermediate representations.

2.2 Related Work

At present, many technologies for processing shapes of objects are developed in large
region including scientific and engineering. There are lots of interesting research areas

performing geometry processing, and among them, we consider differential operators on
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Fig. 2.6. Cross-section of a tetrahedral mesh and its close-up of the boxed area.

specific data structures, surface reconstruction, smoothing, and skeletal structure extrac-
tion. These areas have been well researched so far, and thus in all of these areas too
many algorithms have been proposed for us to introduce all of them. So we focus only on

previous studies which are major or have close relations to our research.
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2.2.1 Differential Operators

The continuous differential operators, gradient, divergence, and Laplacian operators, are
for a orthogonal grid. Recently, differential operators for a triangular mesh and tetrahedral
mesh have been proposed in [DMSB99] and [TLHDO03]| respectively. Since we are working
on a set of spherical supported functions, using differential operators specialized for this
structure is considered as a better strategy, however, no differential operators for a set of

spherical supported functions have been proposed yet.

2.2.2 Surface Reconstruction

For the past several decades, many algorithms have been proposed because of the various
demands of the relevant areas of application. Previous algorithms can be roughly classified

into two groups according to their approach: explicit methods and implicit methods.

Explicit Methods

Typical methods in this category involve Delaunay-based algorithms. Basically, Delaunay-
based algorithms generate meshes whose vertices are parts of sampling points. This is an
intuitive approach, and the first algorithm for surface reconstruction proposed by Bois-
sonnat [Boi84] is also categorized into this group. Delaunay-based algorithms, as shown
in its name, use Delaunay triangulations of sampling points or geometric structure related
to those. Due to the nature of these structures, some algorithms can generate guaranteed
mesh in terms of approximation accuracies, topological characteristics, or qualities like
aspect ratio. Unfortunately, Delaunay triangulations are very sensitive to noise existing
in most scanned data. Recently, a number of algorithms with noise robustness have devel-
oped: the Power Crust [ACKO1] developed by Amenta et al., the Robust Cocone [DG06]
proposed by Dey and Goswami, and the Eigencrust algorithm [KSOO04] constructed by
Kolluri et al. Although these are more robust than previous ones, implicit methods provide
much better results with respect to noise robustness.

Moreover, Delaunay-based algorithms assume that sampling points are sufficiently
dense. Their demands to the sampling density is related to the curvature of objects; highly
curved region is needed to be densely sampled. In areas with extremely high curvatures
such as sharp edges and corners, infinitely dense sampling is required theoretically.

In addition, algorithms in this category tend to be time-intensive because of the global

nature of Delaunay triangulations.

Implicit Methods

Nowadays, implicit approaches are a major force in surface reconstruction because of their



16 Chapter 2 Background and Related Work

stability with noise and low computational costs. Algorithm in this category starts from
the method developed by Hoppe et al. [ HDD192].

Employing implicit methods, the space is divided into the inside and outside of the
object. Thus a surface is defined as the boundary between the internal and external points.
Surface is offered just as an implicit form, and therefore, if necessary, it is approximated
with a mesh generated with a polygonizer such as Marching cubes [LC87], dual contouring
[JLSWO02], and other polygonization method [Blo88]. Implicit algorithms are categorized

more precisely with respect to their local or global natures.

Local implicit methods. Because of their locality, local implicit methods have advantages
such as highly accurate representation and low computational cost, and thus local implicit
methods can process large data sets with several giga bytes. Algorithms in this group
began with VRIP [CL96] which can provides high-resolution surfaces but struggles to
handle misaligned surfaces. Other instances of local implicit approaches are algorithms
employing moving least squares [ABCO*01, GG07] and its variants [AK04, OGG09].
Multi-level Partition of Unity implicits (MPU) [OBA103] proposed by Ohtake et al. excel
in the above advantages.

Local implicit methods have many merits including those listed above and even noise
robustness owing to the implicit nature. But because of their locality, there are some
difficulties in handling very low-quality data such as that with large amounts of noise,
outliers, lack of sampling, and large differences in sampling density. The resulting shapes
for low quality data are sometimes significantly deformed, and may have some extra

components. The fails shown in Fig. 2.4 are results obtained with a local implicit method.

Global implicit methods. Global implicit approaches have the advantage of handling low
quality data. Examples of such methods include the Radial Basis Function (RBF) ap-
proach [CBC'01] developed by Carr et al., the integration of Voronoi diagrams and the
variational method [ACSTDO07] introduced by Alliez et al., the Graph-cut approach given
by Hornung and Kobbelt [HK06], and the finite element method proposed by Sharf et
al. [SLST07]. The Poisson surface reconstruction technique proposed by Kazhdan et al.
[KBHO6| especially excels in computational speed and noise robustness. Unfortunately,
the global implicit approach achieves noise robustness at the cost of high-accuracy re-
construction. Fig. 2.7, the results with a global implicit method for the sampling points
in Fig.2.1 show these characteristics well. Parts like the point of beard and the mouth
which correspond to the lacks of sampling are largely deformed. In addition, because of
the global nature, their smoothing effect influences other regions. As a result the patterns

on the toe are smoothed out.
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Fig. 2.7. Reconstructed model with a global implicit method.

2.2.3 Smoothing

The above discussion about surface reconstruction suggests that generating smooth and
precise mesh through use of only surface reconstruction is a hard issue. One solution to
improve the smoothness is smoothing which has been well-studied as surface reconstruc-
tion. So many smoothing algorithms have been proposed, for both of surface mesh and
volumetric grid.

The simple and intuitive strategy is moving vertices in the direction so that geometri-
cal differences with surrounding vertices become small. As an instance of this method,
Laplacian smoothing is the most intuitive and simple one, so it is followed by many exten-
sions such as Taubin Smoothing [Tau95], bi-Laplacian smoothing [KCVS98] constructed by
Kobbelt et al., and mean-curvature flow [DMSB99] introduced by Desbrun et al. Fig. 2.8
shows the effect of bi-Laplacian smoothing. The left image shows the initial surface mesh
which many undesired bumps are observed on. This smoothing makes the surface more
smooth with only moving mesh vertices as shown in the right image.

More sophisticated techniques are normal-based smoothing[Tau01, OBS02, CTO03].
These algorithms smooth normal vectors first. Then these move vertices. A similar
method for grids is proposed by Tasdizen et al. [ TWBOO02] in the basis of level set
methods [Set99].

An disadvantage of mesh smoothing is that they cannot change the topology of target

mesh, and thus extra components like ones in Fig. 2.4 cannot be removed.
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Fig. 2.8. Results of surface mesh smoothing.
Left: initial surface mesh and close-up of the left leg.
Right: results of smoothing for the mesh in the left image.

2.2.4 Skeletal Structure

There are various kinds of skeletal structures for many application areas. As reviewed in
[CSMO07], many algorithms have been developed for extracting skeletal structures. These
are briefly reviewed below.

To obtain voxelized 1D/2D skeletons from a voxelized solid, method [JBC07] proposed
by Ju et al. performs a thinning algorithm. Another approach [PH02] proposed by
Prohaska and Hege applies a distance transformation from the boundary voxels. Then the
voxels taking the local maxima of the distance field are detected. These techniques extract
skeletal structures as voxels. Thus an additional polygonal mesh generation method as
[FSKKO05] is required if the output model is desired as a mesh representation.

A polygonal approximation of the medial axis can be directly obtained using a Voronoi
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diagram of sampling points on a solid boundary [ACKO01, DZ03|. Although these tech-
niques do not require grid sampling inside the solid, the topology of the resulting mesh is
sensitive to small perturbations of the solid boundary. These methods are therefore not
suited to processing scanned objects, which typically have noisy boundaries.

Using a potential field [MWOO03, CSYBO05] is another possible approach. The skeletal
points are extracted as the stationary points of a gradient descent flow defined by the sum
of radial functions centered at points on a given solid boundary. This approach is mainly

used for extracting 1D skeletal curves.
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Chapter 3

Function on Spherical Covering

3.1 Introduction

Given a set of points {p; € R™} which may be equipped with some values, a scalar field
for a domain in R? including {p;} can be generated. The instance of such a set of points
are, for example, CT-scanned data and surface scanned data, and values attached to each
point are, intensity and normal vector respectively. An example of a generated scalar field
for 2D points is shown in Fig.3.1. Colors indicates a high value with red and low with
blue. Such a scalar field can be generated with covering a domain with spheres equipped
with local functions.

In this chapter, the structures of such a sphere and a cover is described in Section 3.2 and
the properties of the scalar field are explained in Section 3.3. The generation algorithm
for 2D and 3D sampling points are denoted in Section 3.4.1 and 3.4.2 respectively. Based
on a spherical cover, dividing a covered domain with tetrahedral mesh is also possible. In

Section 3.5, a tetrahedral meshing is explained.

B
T e

Fig. 3.1. Shape representation applying spherical covering method in 2D.
Left: a set of sampling points and a spherical cover.
Right: generated scalar field and isosurface representing the shape of the original
object.
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3.2 Data Structure
Spherical support

Below the coordinates of a point x are indicated with a bold letter . Spherical
support s; is an n-disk which is defined by center ¢; and radius 7;, and has an implicit
function g;(x). The n-disk (also called as n-ball ) is the interior of a sphere which is
the set of all points whose distance from ¢; is r;. n is the dimension of a point in {p;}.
Support of a function f(z) is a closure of the set of argument x which satisfies f(z) # 0.
The support of g;(x) should be s; itself. Implicit function g;(x) locally approximate the
values associated points inside s; such as intensity or distance from a surface of an original
real object.

In this thesis, a simpler term support means spherical support unless stated otherwise.

Spherical Cover

When a union of spherical supports contains a domain, the set of spherical supports
is referred to as a spherical cover of the domain, and the domain is covered by the
spherical supports. Note that a covered domain is completely contained in the union of
supports. Fig3.2 shows examples of spherical covers for 2D and 3D domains including
sets of points.

In order to avoid gaps in a spherical cover (areas which are not covered with spheres) as
long as possible, spherical supports should intersect each other. Moreover, with consid-
ering these intersections, we can define the connectivity between the spherical supports.
When a support intersects with another support, these two supports are considered as
connected. Moreover we call a spherical support intersecting with s; as neighbor of
s;. Fig. 3.3 shows examples of this connectivity rules; support s; and s; is connected and
support s; and s is connected, but support s; and sj, is connected. This connectivity
is, in a manner of speaking, a semi-connectivity relation which means that connectivity
between arbitrary two supports cannot be determined by transitive law. For example, in
Fig. 3.3, connectivity between support s; and s, can not obtained with the connectivity
of s; and s;, and s; and sy.

For connected supports s; and s;, we define intersection disk as a disk whose boundary
is the circle where Js; and 0s; intersect. See Fig.3.3. Intersection disk of s; and s; is
shown in a green line.

The implementation details of connectivity of support spheres are explained in Ap-

pendix B. It helps fast and memory efficient computation.
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(c) (d)

Fig. 3.2. Examples of spherical covers for 2D ((a) and (b)) and 3D ((c) and (d)) domains.

3.3 Partition of Unity

Given a spherical cover {s;}, an weighted average f(x) of local approximation functions
{gi(x)} can be obtained. f(x) is described as follows:
> wi(T)gi(z)

> wi)

where w; () is a weighting function whose support is s; similar to g;(). The sum on the

flx) = (3.1)

denominator is for normalization of the weight. The domain of f(x) is a union of {s;}.
This is the algorithm known as Partition of Unity [Ren88], which is hereafter abbre-
viated as PU. This name comes from the normalization term.
The approximation error of g;(x) is bounded up to a given tolerance . Because of the

nature of PU, the error of f(z) is also bounded up to e.
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Fig. 3.3. Connectivity of spherical supports. Intersection disk of s; and s; is shown in
green line.

3.4 Generation of Spherical Cover

In this section, algorithms to generate spherical covers for sampling points from surfaces
and for volumetric data are explained respectively. Section 3.4.1 is for sampling points

from surfaces and Section 3.4.2 is for volumetric data.

3.4.1 Spherical Cover for Sampling Points from Surface

The aim of generating a spherical cover from sampling points from a surface is rep-
resenting the shape of an object. First, the representation based on spherical covering
is denoted. Next, the details of generation methods of a support sphere and a whole

spherical cover are explained.

Shape Representation with Spherical Cover

Given a set of points {p;} sampled from a surface of an object associated with oriented
normals {n;}, we approximate the surface of the object with the zero-level surface of
signed distance function f(x). In our algorithm, points inside the object have positive
values of f(x). An example of a scalar field of f(x) is shown in the image on the left of
Fig. 3.4. Values of f(x) are indicated in red for high, and blue for low. A domain including
all the sampling points is covered by a spherical cover as shown in the image on the right of
Fig.3.4. This approach is similar to that of sparse low-degree polynomial implicit (SLIM)
surfaces [OBAO5] but SLIM generates a spherical cover only for the boundary surface. On
the other hand, in this algorithm, spherical supports are generated inside and outside as

well as on the boundary surface.
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Fig. 3.4. Examples of a scalar field and a spherical cover in 2D.
Left: the scalar field determined by f(a) and the reconstructed image (black
line).
Right: the supports of local approximation functions {g;(x)} are indicated with
pink circles whose centers are represented by blue dots. Black dots means the
sampling points.

Spherical Support

As mentioned above, a spherical support s; is defined with the center ¢; and the radius
r;. Support s; has a local implicit function g;(x), whose support is s; itself. The local
function g¢;(x) approximates the signed distance from the surface inside s;, see the left
image of Fig.3.5. We adopt a linear function as g;(x). The reasons of this are that,
mesh, the final representation of our algorithm, is a linear approximation of a shape,
and its density is directly determined by the density of supports. Since we generate
a spherical cover with respect to the approximation error, adapting linear functions as
approximation functions is reasonable. Local approximation function g; () is represented
as gi(x) = o - (& — ¢;) + (B; with coefficient vector «; and constant term [3;. The value
of g;(x) for a point x inside s; locally approximates the signed distance of  from the
surface. Isosurface g;(x) = 0 therefore approximates the surface inside s;.

Local approximation g;(x) can be determined with least square fitting for sampling

points {p;} inside s;. The obtained o; and j; are described as

o [ 2viP5)(e — p))
- iji(pj) ‘

_ Zj w;(p;)n;
Y, wilpy)ng

(87

(3.2)

These are the weighted averages of normals and relative coordinates for ¢; of {p,}. In

this algorithm, weighting function w;(x) is the second-degree B-spline by (d):

w;(x) = by <3”"“'2;C”> , (3.3)
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Fig. 3.5. A spherical support and a spherical cover for surface reconstruction. Black
points mean sampling points.
Left: a spherical support with a local approximation function g;(x) shown in a
yellow green line.
Right: a spherical cover. The weighted average f(x) of {g;(x)} is show with a
green line.

Spherical Cover

On a spherical cover, a weighted average f(x) of local approximations {g;(x)} can be
determined. It represents the signed distance from arbitrary point & (inside the spherically
covered domain) to the surface of the object. Here is the equation:

2 wi(x)gi(®)

The isosurface f(x) = 0 approximates the shape of an object as the right image of Fig3.5.

f(x) = (3.5)

Here we outline the generation of a spherical cover for a domain including sampling
points {p,}. We assume that the domain is a rescaled bounding box of {p;} the length
of whose longest edge equals to one. In this step, a spherical cover is generated with two-
step algorithms. We realize the initial step using the method proposed by MPU [OBA 03]
first, and then modify it employing a error-driven procedure. The number of final spherical
supports becomes lower than the result generated through MPU.

Similarly to MPU, the generation process starts with dividing the domain with an
adaptive octree measuring local approximation errors, details below. Using the centers of
cells (octants) of an adaptive octree as the centers of supports is a good way of ensuring

the accuracy of reconstruction. The difference of the division level with a neighboring cell
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is set to at most one. The centers of quadtree (2D version of a octree) for 2D sampling
points shown in the left image of Fig. 3.6 is shown in the center image. The centers exist
following the sampling density. The finally obtained spherical cover is shown in the right
image. The centers of supports are shown with blue points. The distribution of supports

and those size reflect the density of sampling points.

Fig. 3.6. Centers of quadtree and generated spherical supports in 2D.
Left: input sampling points.
Center: the centers of cells of a quadtree.
Right: generated spherical supports and those centers.

In the method to generate the initial spherical support, an octant is assigned a spheri-
cal support s; whose center ¢; is the center of the octant and radius r; is 0.75 times the
length of the octant’s diagonal. Then, g;(x) is determined with equation (3.2). We mea-
sure the approximation error of g;(p;) for sampling points {p,} inside the corresponding
support with the maximum value of |g;(p;)|. Each octant is divided recursively until its
approximation error does not exceed a user-specified tolerance .

After the initial spherical cover is generated, it is modified with expansion of the radii
of randomly selected supports as long as those local approximation errors do not exceed
€. Spherical supports completely included inside an expanded support are eliminated.
In Fig. 3.7, 2D examples show this expansion. The left image shows the initial spherical
cover. The red support is to be expanded. After the expansion, as shown in the right
image, supports inside the red support (shown in purple) are eliminated. This operation
means maximizing r; without exceeding £. This expansion and elimination step helps to
reduce the number of supports. In our experiments, the final number of supports is about

half the number of octants.

3.4.2 Spherical Cover for Volumetric Data

In this section, a set of spherically supported functions are constructed from volumetric

data. The goal of this covering is approximation of the values of a subset of input points.
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Fig. 3.7. Spherical support expansion and elimination.
Left: the initial spherical cover generated by MPU.
Right: the spherical cover after expansion.

Although we explain only the case that covering an object, it is possible to cover the whole

volumetric data in the same manner.

Input
This algorithm takes a set of spatial points equipped with normalized values as input

data:
P = {pi = (wl,vl)]wz < RS,UZ' € [0, 1]} (36)

These points can be obtained with normalization of intensities of sampling image including
CT scanned data and grayscale image. The left image of Fig. 3.8 shows a 2D analogous
example. Such a set consists of two kinds of points; points belonging to an object and
points that make up the background. We assume that points with a value greater than a
user’s specification T represent an object. Taking T’ as input is reasonable because each
material has a unique CT value. In the following of this chapter, these points are referred

to as object points, and the set of all object points is described as
Povj = {pilvi > T}. (3.7)
With setting the value of &, to 0, a cover for the whole volumetric data can be obtained.

This algorithm construct a set of spherical supports covering {Zp;} and its surrounding

space.
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Fig. 3.8. Spherical cover for volumetric data.
Left: grayscale image (volumetric data).
Right: Support circles.

Spherical Support
As a local approximation function g;(x) associated to each spherical support s;, we
adopt a quadratic function which is described as

Gi(T) =Crz@? + Cyyy? + 222 + CoyTY + Cyyz

3.8
FCop2 + CoT + Cyy + C22 + Co ’ (3.8)

where each coefficient ¢, is in R. The center ¢; of s; is a point among Z,,;. The radius
r; is adapted to the change of the intensities in the vicinity of ¢; as in the right image of

Fig.3.8. The values of intensities rapidly change near boundary, as a result the sizes of

supports also largely change.

Spherical Cover
In order to approximate the intensities of a part of & with a scalar function f(x), a set
of spherically and adaptively supported functions {g;(x)} is generated. See Fig.3.9, an
image of the relation of an approximation function f(x) and a set of local approximations
{9(@)}.
The approximation function for a point © = (x,y, 2) € R? is represented with a partition
of unity using polynomial approximations [Ren88|:
> wi(@)gi(x)
Ywi(m)

Weight function w;(x) is specified for each spherical support. For a support s; with a

flx) = (3.9)

radius ; and a center ¢;, w;(x) is defined as

exp (~125910) f@m)r? (e — el <)
W (m) = o l . (310)
0 (otherwise)
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Fig. 3.9. Approximation of intensity with second degree local functions.
Green line means approximation function f(a) and yellow green lines mean local
approximation functions {g;(x)}.

In equation (3.10), the support of w;(x) is truncated in ||z — ¢;|| = r;. This truncation
may cause a discontinuity of f(x). In order to make f(x) continuous, if needed, cubic
B-Spline may be a good candidate w;(x). We experimented a B-Spline version but could
not find discernible differences of the quality of results.

The details to decide the radius r; and local function g;(x) of s; is denoted in the

following section. Then the whole algorithm to generate a spherical cover will be explained.

Generation of Spherical Support

Here we denote the way to generate single spherical support s;. Local function g;(x)
associated with s; approximates intensity of points {p,} inside s;. Since original CT data
include noise, using approximated data is better to achieve noise robustness. We generate
a spherical support following the error-driven approach proposed in [OBS03]. Given a
noise tolerance ¢, the support radius r; of s; is determined as the solution of the following
equation:

where
pi = Tailote) ) C ew

gi(z)=argminE2(r)
94

We sum over {p;}, the points whose distances to the center ¢; of s; are less than or equal
to r. With respect to the definition (3.12), g;(x) is a minimizer of E;(r).
Usually, error tolerance ¢ is offered as a scanning information. But in the case that ¢ is

not available, we set the value as 5% of the range of the values of intensity.
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Equation (3.11) means to maximize the radius of a support without exceeding the error
tolerance. Under the assumption that the approximation error monotonically increases as
r grows larger, equation (3.11) can be solved with a bisection method [PTVF93]. Let us
denote the minimum and maximum radii used in the bisection method as rmin and rmax
respectively. Setting a large value for ry,, enables reducing the number of supports. In
our implementation, rya.y iS set to the maximum thickness of the object, in most cases
which is directly obtained from the scanned object itself. If thickness cannot be known,
a user can estimate it through a distance transformation for the inside of the object. On

the other hand ry,;, should be small enough with keeping the set of supports covering the

object without gaps.

>
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Fig. 3.10. Spherical supports and approximated intensities of CT-scanned data.
Lower left: a part of CT-scanned data and generated spherical supports.
Top and right: graphs of approximated intensities.

Because the intensity changes rapidly on boundaries of object, the radii of spherical
supports whose centers are near a boundary tend to be small. In contrast, far enough

from the boundary, the intensity changes slightly or may not change in supports, and
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therefore the radii become large. Fig.3.10 this tendency of change of the radii. A part
of CT-scanned data is also displayed in lower left. The radius of a small green circle (2D
spherical support) means the minimum radius 7y, while the radius of a larger circle
drawn in blue dotted line means the maximum radius r,.x. The top graph shows the
changes in the intensity at the horizontal cross section, while the graph on the right shows
that at the vertical. These two cross sections are drawn with red lines in the image of
CT-scanned data. As shown in these graphs, the changes in the approximated intensity

are similar to Gaussian functions.

Generation of Spherical Cover
In this section, a method to generate a spherical cover like that in Fig. 3.11 is explained.
Generated spherical cover covers a space including &,,;. The algorithm is summarized

below.

Algorithm: generating spherical cover

1. Initialization: set P,; as the center candidate list €.
Mark all points in € as uncovered

2. Spherical support generation: select a point randomly from % as a center ¢;
and decide the radius r; and local function g;(x)

3. Covering check: remove covered points from €

4. Termination check: if ¥ = () then the algorithm terminates.

Otherwise go back to Step 2

2D examples of the above algorithm are shown in Fig.3.12. In Fig.3.12, Z,; are
depicted as white points and other input points are shown in black points. In the first
state, (a), no object point is covered (marked as uncovered in Step 1). As a spherical
support is generated in Step 2, some points are covered with the generated support and
remarked as covered. In Fig. 3.12, a new support is drawn with a blue circle, while supports
already existing are drawn in black. To avoid generating too many spherical supports,
in the next iteration, new center is selected among uncovered-marked points, see (b) and
(c). Finally all object points are covered with supports and a spherical cover is generated,
(d).

Step 2 where some points are remarked as covered, is an expansion to 3D space of the
2D method proposed in [WKO04]. In both methods, the object points to be remarked as
covered are those inside the convex hull determined by the object points in the newly

generated spherical support. See 2D examples in Fig. 3.12, such convex hulls are shown
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in light blue and points which should be remarked are in blue. Note that points that are
vertices of the convex hull are not considered as covered with the support. In the next
iteration cycle, the center of a new spherical support will be selected among uncovered
points. Using this method, generated spherical cover has no gap in most cases.

The number of generated spherical supports is much lower than the number of object

points.

Fig. 3.11. Spherical cover for skeletal structure extraction.
Left: isosurface extracted from a CT-scanned data.
Right: spherical cover for the same object as that of the isosurface in the left
image.

Fig. 3.12. Covering of object points (white points).
(a) A support is generated. Blue colored points mean covered points.
(b) and (c¢) Another support is generated.
(d) Final state. All object points are covered.
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3.5 generation of Tetrahedral Mesh

After generating a spherical cover, we can generate a tetrahedral mesh as in Fig. 3.13
(as a triangular mesh in 2D). This tetrahedrization is realized with connecting the cen-
ters of spherical supports. The connectivity of tetrahedral mesh is determined using the
adjacency of a spherical supports.

Tetrahedral mesh which our method adopts is a subset of weighted Delaunay tetra-
hedrization following the definition introduced by Edelsbrunner [Ede93]. Weighted Delau-
nay triangulation of & is defined by the dual of the weighted Voronoi diagram for &2 with
a weighted distance rather than the Euclidean distance. Here is the weighted distance

between a point p and a site s assigned a weight w
ds(p) = d(p, 8)* — w}. (3.13)

In our method, the centers of spherical supports work as sites and the radii of supports
work as weights.

The connectivity of mesh can be determined on the basis of the adjacency of spherical
supports. In the calculation of connectivity, the dimension of sphere is raised by a factor of
one. That is, the adjacency of 3D /2D spheres is considered with 4D /3D spheres that have
the same radii and centers as the original 3D /2D spheres. The triangulation obtained with
this one-dimensional increase method is a subsets of weighted Delaunay triangulation. An
example for a case changing from 2D to 3D is illustrated in Fig. 3.14. The left image shows
an original 2D supports. Blue points mean the object points, and these are completely
covered with supports. The right image shows the result of the one-dimensional increasing.
3D spheres and triangular mesh obtained with weighted Delaunay triangulation. Readers
may notice that the tetrahedral mesh may not completely cover the object points near
the boundary of the object. Our target structure exists near the center of object and
tetrahedral mesh is used just for estimating the structure, and thus this uncovered region
causes no problem.

Now let us consider a change from a 3D sphere to 4D as an example. To obtain the
adjacency, checking the collision of boundaries of spherical supports is enough. This
is the reason that the term sphere (the boundary of spherical support) is used in this
section. The original 3D sphere centered at (cg, ¢y, c,) € R® with radius r is described as
(x —cz)?+ (y —¢y)? + (2 — ¢;)? = r2. This sphere will become a 4D sphere with equation
(x—cz)?*+ (y—cy)? + (2 —c2)* + (u—0)? = r%. Note that the center of 4D sphere is the
same point as the center of the original 3D sphere on the z,y, z space.

As mentioned above, the adjacency of 4D spheres determines the connectivity of tetrahe-
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Fig. 3.13. Tetrahedrization using a spherical cover.
Left: a part of a spherical cover. Right: tetrahedral mesh generated from the
spherical cover on the left.

Fig. 3.14. Raising dimension of spherical supports from 2D to 3D.
Left: spherical supports for 2D points.
Right: 3D spheres generated with raising the dimension. Green lines shows the
connectivity of triangular mesh obtained from these 3D spheres.

dral mesh. First, we select four 4D spheres with intersections. The number of intersection
points are at most two points. Then if an intersection point is not included in other 4D
spheres, the centers of these four 4D spheres are connected and a tetrahedron is created.
As the centers of 4D spheres have a value of zero in the fourth coordinates, the generated
tetrahedron exists in the 3D space. Examples of this triangulation in 2D are illustrated
in Fig.3.15. The triangulation process in 2D is basically same as 3D version. The only
difference is that intersection points are considered for a set of three 3D spheres. The
left images in Fig. 3.15 show original 2D spheres and the right images show 3D spheres.

Yellow green points means the centers of spheres, and yellow points are the intersecting
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points. Gray lines in the right images mean the z,y plane. The top column is a case
that a triangle is generated while the bottom is not generated. In the latter case, the

intersecting points are included by another sphere (depicted as a red circle).

Fig. 3.15. Triangulation for 2D points.
Left: original 2D spheres. Right: 3D spheres (lateral view).
Top: case that a triangle is generated. Bottom: case that a triangle is not
generated.

3.5.1 Avoiding Degeneracy

Let us consider the case that the input sampling points come from volumetric data.
Typically volumetric data offers uniformly sampled points. As a result, in most cases,
triangulations have a number of degenerate areas. To avoid this degeneracy, we slightly
perturb the centers only in the intersection testing. Each center is moved 0.01 x 7; in
random direction. Note that the perturbed coordinates are used only for calculation of
the connection. That it, the coordinates of vertices of obtained mesh are completely the
same as ones before perturbation. This perturbation has no mathematical guarantee, but

offers good results in this thesis.
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3.5.2 Quality Improvement

The image on the left of Fig. 3.16 shows a 2D triangulation obtained applying the above
strategy. In this triangulation, some skinny triangles (with a low aspect ratio) appear
near the boundaries of the object. This is because some small spheres are absorbed by
larger spheres and the centers of small spheres cannot appear in triangulation as vertices.

In terms of aspect ratio, the mesh quality can be improved through smoothing the
size changes of triangles. Multiplying all radii of supports by o < 1 and using these
smaller radii facilitate the avoidance of intersections of small spheres being included in
other spheres. This radius shrinking makes the number of vertices and tetrahedra of
tetrahedral mesh increase. As a result, small tetrahedra appear near boundary and values
of aspect ratio of tetrahedra increase. Thus the quality of tetrahedral mesh is improved.
Good results are obtained using o = 0.75 in all examples in this thesis. See the right-hand
part of Fig.3.16. Many small triangles appear near the boundary replacing the skinny

ones, and thus the ratio of triangles with better values of aspect ratio increases.

Fig. 3.16. Mesh quality improvement.
Left: triangulation without scaling of spherical supports.
Right: triangulation after scaling.

Fig. 3.13 is a result of this tetrahedrization for a part of a spherical cover of an industrial
object. The number of all supports in the whole spherical cover is 44,095. The tetra-
hedral mesh corresponding to the whole spherical cover has 44,084 vertices and 226,474
tetrahedra.
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3.6 Summary

In this chapter, the definition of spherical support and spherical cover are introduced
and their data structure are described. They are followed by generation methods for
sampling points from surfaces and for volumetric data. With the help of weighted De-
launay tetrahedrization, spherical covers can determine tetrahedral meshes. The specific
algorithm of this spatial division is also explained.

In the following of this thesis we study enhancements and applications of this spherical
covering technique. In the next Chapter4, the differential operators on the spherical
cover will be derived. Some algorithms applied spherical cover are proposed in the other

following chapters.
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Chapter 4

Differential Operators on Sphere
Covering

4.1 Introduction

Differential operators are fundamental mathematical tools and appear in many geome-
try processing applications involving smoothing and shape analysis using curvature. Some
shape representations have differential operators which are specialized to their data struc-
ture.

Unfortunately, spherical covers have no proper differential operators. So in this chapter,
we define new differential operators for a spherical cover using the set of supports as a
grid-like data structure. We show only the 3D case in the following and discuss about
the discretization of the differential operators in nD space in Section4.5 with showing

expected formulas.

4.2 Differential Operators

Before deriving new differential operators, definitions of the continuous differential op-
erators are presented.
The nabla is a vector operator and also called Del. This operator is described in

Cartesian coordinate system R? as

o o0 0
(2 2“1 4.1
v ((’%7 oy’ 82) (4.1)
The gradient of a scalar field f is a vector field represented as
of of of
= =,==, = ). 4.2
Vi (830’ oy’ 8z> (42)

The divergence of a vector field v = (vg, vy, v,) is the dot product of V with v

_ Ov, % N Ov,

Vv 8x+8y 0z

. (4.3)
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The Laplacian operator is defined as

o 9 0
= 2 — . P — [R— —_
~= o2 "o "o (44)

There is also a vector function curl defined as V x v, however this thesis does not handle

this function.

4.3 Derivation

In most applications on a spherical cover, operations are performed only at the centers
of spherical supports. So we define new discrete operators of their centers. To distinguish
our discrete operators from traditional continuous ones, hereafter we denote new operators
as Grad(:), Div(-) and Lap(:) corresponding to the traditional V(:), V - (+) and A(-),
respectively.

First of all, we assume that our gradient field satisfies the following condition:

Assumption4.3.1
Each spherical support s; is assigned a constant vector v;. ]

Under the assumption4.3.1, we construct a vector field in a PU manner. The vector at

arbitrary point « is evaluated as follows:

v(x) = M (4.5)

> wi(T)
Now we start operator derivation. First, the divergence operator Div(v;) will be derived.

We define Div(v;) as the average of integration of the continuous divergence V-v(x) inside

Si;
4rrd

?Div (v;) = . V - v(x)dx. (4.6)

Here we introduce the divergence theorem for each support.

e Divergence theorem ~N

Let V be a region with boundary S. Then the volume integral of the divergence of
the vector field v over V is equal to the surface integral of v over S;

/mev(v v)dV = /mes v - ndS. (4.7)

N J

Following the divergence theorem, the right hand side of equation (4.6) can be represented

as a surface integral over the boundary 0s; of s;:

o
43 " Div (v;) = /w V) @)z, (4.8)




40 Chapter 4 Differential Operators on Sphere Covering

where n(zx) is the unit normal at point « on 0Js;.

We discretize this surface integral with surface integrals inside neighbors {s;} of s;. Let
d0;,; be the part of ds; inside a neighbor s;. See Fig.4.1, an illustration of 2D spherical
supports. In Fig.4.1, 9; ; is indicated by the green dotted line.

For simplicity, we introduce the following assumption.

Assumption 4.3.2

di,; is covered only by s; and s;.

Under Assumption4.3.2, v(x) in d; ; is v;. Now, the approximation of the left hand side

of equation (4.8) is approximated by a sum of surface integrals over d; ;:

‘i (v:) dr 3 / v; - n(z)dz (4.9)
) 8 =———— 4 P . .
Z:j f:ceéi,j Az i Jaes; ’

When neighbors of s; overlap each other, the sum of the areas of {¢; ;} is greater than the

3

true value 4772 of the area of ds;. In the approximation (4.9), denominator > ; Je 5 dx

on the right hand side works as a normalizer.

Fig. 4.1. Spherical supports in 2D. The orange lines are isolines of the local approxima-
tions, and the blue arrows are their normals. d; ; is indicated by the green dotted
line, and the intersection disk with area D; ; is indicated by the solid green line.

Discretizing the integrals of (4.9) provides a new divergence operator at ¢;. Following
is the way to discretization. Let us start with the right hand side of (4.9). Calculation is
performed on spherical-coordinate system
x = Rsinfcos
y = Rsinfsin (4.10)
z = Rcosf

where 0 € [—3m, 1] and ¢ € [0,27], see4.2. The origin of this coordinate system is the

center ¢;. The center ¢; is on the z-axis, that is, the centers ¢; and c¢; are on the z —y
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plane. The Jacobian matrix of a function f(x) is described as

sinfcosp Rcosfcosp —Rsinfsinp
= | sinfsingy Rcosfsinp Rsinfcosyp
cos 0 —Rsiné 0

The Jacobian determinant J is

J =det (Jf(x))
= R?sinf.

The normal vector n(x) at a point & on boundary Js; is represented as

sin # cos
n(x) = | sinfsing
cos 6

Fig. 4.2. Two spherical supports in spherical-coordinate system.

Let the gradient vector v; be

41

(4.11)

(4.12)

(4.13)

(4.14)

The surface integral [ cs. . Vi - m(z)dx in approximation (4.9) is calculated as follows:

27 9j
/ vj -n(z)dr = / / v; - n(x) R? sin 0dOdp
:13651',]' 0 0

(4.15)

27 9]'
= / / (vjz sin 6 cos ¢ + v, sin 0 sin ¢ + v, cos 0) R?sin 0dfdyp
o Jo

= (Rsinej)2 v},
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7 (R sin Oj)2 is equal to the area, described as D ;, of the intersection disk of supports
s; and s;. This suggest that the integral of continuous divergence over ¢; ; is equal to
the integral of inner product of the assigned vector v and the normal over corresponding
intersection disk. Remaining v;, is caused by the symmetric property of m(x) about ¢

in the integral range. In addition, from the symmetric property of n(x) in the integral

range,
Cj — C;
v, =V ———— (4.16)
o e el
holds. Therefore, the right hand side of (4.9) can be discretized as follows:
dqr? / dmry 320 Dij ci—¢
=) v;-n(x)dr = e . (4.17)
Zj fwéﬁi,j dx Z] xTEY;, ! Zj fme&,j dx ||cj - CZH
Following the above calculations, a discrete divergence operator is obtained:
3 c; —¢;
Div(v;) = — D;;v; ——" 4.18
() = 15 25 P % o e 1

S; = dx. 4.19
>,/ L (4.19)

For simpler notation, introducing

D,
bij = 0, (4.20)
T lej — el
equation (4.18) can be rewritten as
. 3
DlV(’Ui) = ’I“iSi Zj @JUJ» . (Cj - Ci). (421)

Now a discrete divergence operator has been defined.
Next, we define the discrete gradient operator of a vector field with the first-order Taylor
expansion at c;:
v; = v; + Grad(v;) - (¢; — ¢;). (4.22)
Now we have the divergence and gradient operators, so the discrete Laplacian operator

will be derived using these operators. It can be derived through

Lap(v;) = Div(Grad(v;)) (4.23)

in a way similar to the continuous form

Av;) =V - V(v;). (4.24)

With replacing v with Grad(v) in the definition of discrete divergence operator (4.18),
the right hand side of equation 4.23 is obtained;

3

Div(Grad(v;)) = s

Zj ¢i7le“ad(’Uj) . (Cj — CZ'). (425)
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Using (4.22), the inner product in (4.25) can be replaced by the difference of vector v;
and v;:

Div(Grad(v;)) = S Z bii(vj — v;). (4.26)
Finally the discrete Laplacian operator is defined:

Lap(v;) = v;). (4.27)

The above operator is the Laplacian of a vector field. In the same manner, the Laplacian

on a scalar field with a linear approximation function f(¢;) can also be derived through
Lap(f(e;)) = Div(Grad(f(c;))). (4.28)

Note that f(x) must be a linear function so that Grad(f(zx)) becomes a constant vector,

because our operator Div(-) is only for a constant vector. The Laplacian of f(c¢;) is

Lap(f( — f(ci). (4.29)

If f(x) is offered as weighted average of linear local approximations, f(x) has an O(r?)

approximation order (r is the support size of a local approximation) to the original surface.

4.4  Implemental Calculation

In this section, arithmetic details of discrete differential operators are shown.
Again consider on the spherical-coordinate system. We rewrite approximation (4.9)
with terms of spherical-coordinate system. See Fig. 4.3, a support s; and its neighbors.

First, the surface integration over 9; ; is calculate as

27 9]'
/ dr = / / r2 sin 0 df de (4.30)
€5, ;

= 2777 (1 — cosb;) .

Following this result and the fact that the surface integration of continuous divergence
of a vector over ¢; ; is equal to the integral of the inner product of the vector and the
normal over an intersection disk of s; and s;, the approximation (4.9) can be calculated

as follows:
2
T’V cv(x) ~ Z]E:Z:Jdm Zj /a:eém- v - n(x)dx (4.31)
dr? 35, m (7 sin 6 ) vj,
>, 2mr? (1 — cos 6;)
2wy (risin Hj) vj,
> (1 —cosb;)
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Fig. 4.3. Support s; and its neighbors.

Expression of discrete divergence operator in spherical-coordinate system is led by the

above calculation to be )
32]‘ (’r‘i sin9j) Vj,

iv(v:) 2r} 325 (1 — cos ;)

(4.32)

The values of r;sinf; and r;cosf; can be obtained through elementary geometrical
calculation. Let us consider a case that two supports s; and s; with radii r; and r;
intersect each other. The distance between the centers are d;. It is decomposed to [; and
l; at the crossing point with the intersection disk, see Fig. 4.3. In this case, it is observed

that r;sin6; and cos; become

rising; =/r? =12, (4.33)
l;
cosf; = —. (4.34)
T
In addition, the following two equations holds:
2 _ g2 2 _ 72
{ dj =1l +1;
These relations suggests that the value of [; is obtained as
d? +r?—r?
[, =L+ 7 4.36
i) (4.36)
Consequently, the spherical-coordinate expression of Div(v;) becomes as follows:
A2 4r2—r2\ 2
5 2 <Ti2 - (%j]) )sz
Div(v;) = . (4.37)

22 d3tr?—r?
i Zj R P
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4.5 Discussion

The new discrete differential operators derived in this chapter are operators only for a
constant vector. Moreover, the new discrete Laplacian operator for a function assumes its
argument is a linear function. These assumptions are very strong simplifications, so more
verification may be needed.

In geometry processing area, many applications use linear approximations. Hence as-
suming the local approximation functions are linear is reasonable.

Nevertheless, changing the primitive functions to be quadratic and cubic functions can
extend their application areas. This change can be easily achieved with straightforward
extension of calculation, but the calculation is quite complicated.

Another problem is the asymmetry in the operators of two intersecting spheres. This
problems can be solved using a unique area partitioning such as the Laguere Voronoi
diagram. Specifying the area partition with such a method is our future work.

We defined the discrete gradient, divergence, and Laplacian operators of a vector field,
but leave the curl. Derivation of the curl of a vector field is a worthful future work to be
performed.

Another issue is the derivation of the discrete differential operators in nD. With the

formulas of the discrete operators in 3D, the nD-discretized operators are expected to be

v; = v; + Grad(vj) - (¢; — ¢;) (4.38)
Div(v;) = - S Z ¢ijv; - (¢ — ;) (4.39)
Lap(v;) = S Z bij (v — v;) (4.40)
Lap(f(e)) = 1 3 6u (/) — f(eo). (1.41)

Proving higher dimensional case (n > 3) is not obvious while the 2D case can be proved
straightforward changing the derivation of the 3D case.

The set of the proposed discrete differential operators can be applied to many applica-
tions such as smoothing vectors and volume processing. In the latter part of this thesis,

we show two instances of applications of the discrete differential operators.

4.6 Summary

In this chapter, we derived new differential operators for a spherically covered domain

under two assumptions:
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e Each spherical support s; is assigned a constant vector v;,
e the region J; ; of boundary of a spherical support s; inside another support s; is

covered only by s; and s;.

Our differential operators are gradient, divergence, and Laplacian operators on a constant
vector, and Laplacian operator on a scalar. These operators are defined at centers of

spherical supports.
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Chapter 5

Surface Reconstruction

5.1 Introduction

Fig. 5.1. Examples of sampling points and a surface mesh.
Left: a set of sampling points obtained using a laser scanner.
Middle: close-ups of boxed parts of the sampling points and the surface mesh.
Right: reconstructed surface mesh.

Surface reconstruction is a process generating a surface from sampling points. Some-

times, if necessary, generated surfaces are approximated by surface meshes. This subject
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is a very important in many industrial areas where shapes of real objects are handled,
including mechanical engineering as CAD, CAE and computer graphics. Surface recon-
struction is an essentially hard issue in the point that original shape cannot be completely
known from sampling points. Moreover, as mentioned in section 2.1.1, some kinds of prob-
lems such as noise, outliers, and lack of sampling make surface reconstruction difficult. In
order to overcome these difficulties, many algorithms are proposed. Some methods related
in this work are introduced in section 2.2.

In this section, a surface reconstruction algorithms is proposed on the basis of partition
of unity approach. It is robust for low-quality data because of using Graph-cut and

diffusion technique.

5.1.1 Problem Setting

The goal of surface reconstruction is generating a surface representing an object from
sampling points from the surface of the object. Generated surface can be convert to a
2-manifold triangular mesh which may have boundaries. One example of reconstruction
from scanned points is shown in Fig.5.1. Sampling points can be obtained by use of
scanning devices as denoted in section 2.1.1.

In this work, sampling points are assumed to have oriented normals. If normals are not
equipped, we can obtain those with a simple method, for instance, evaluation based on

the principal component analysis as introduced in [HDD92].

5.1.2 Our Approach

We are led by the discussions in section 2.2.2 to propose a novel surface reconstruction
algorithm that is essentially based on a local implicit method. Local approach has advan-
tage to represent details. But the existing local algorithms are fitting-only approaches, so
cannot handle low quality data well. Therefore generating a smooth surface only with a
local method was a very difficult problem.

To achieve a smooth and precise representation, we combine a local method and a
global method, and then smooth the local approximations using a diffusion technique.
We adopt a PU implicit as a local implicit method, Graph-cut as a global, and Laplacian
smoothing as a smoothing method. Fig.5.2 shows the overview of our algorithm. First,
the initial spherical cover is generated with PU approach. Then Graph-cut is performed.
The purpose of the second step is removing the affects of outliers. The third step is
smoothing of local approximation functions. The affects of noise are removed in this step.

Finally, reconstructed surface is converted to a surface mesh.
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Fig. 5.2. Overview of surface reconstruction algorithm.

Outlier Robustness. PU is a local approximation technique, meaning that obtained sur-
faces have high accuracy but are sensitive to noise. Graph-cut, on the other hand, is a
global algorithm that is robust to noise but produces low-accuracy results because it is a
discrete binary operation. With combining these two approaches, we can find spherical
supports which are affected by outliers and lack of samplings. Fig. 5.3 shows the effect of
this combination. While the result obtained using only PU has many undesired surfaces,

result provided by proposed combination method has no such surfaces.

Fig. 5.3. Surface reconstruction for sampling points with many outliers.
Left: sampling points including many outliers.
Middle: result without Graph-cut.
Right: result with Graph-cut.

Noise Robustness. For the purpose of improving noise-robustness, our aim is to smooth

the local approximation functions using the differential operators derived in Chapter 4.
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This smoothing inherits the benefits of local implicit methods and smoothing.

We perform the Laplacian smoothing for a vector field defined by the gradient of the
approximation function. Then the approximation functions are updated to reflect the
smoothing of the gradient field. This smoothing process achieves a strong noise-robustness,
see Fig.5.4. The bumps in the surface obtained from the initial PU do not appear in the

surface generated using our smoothing method.

Fig. 5.4. Surface reconstruction for sampling points with noise.
Left: sampling points including noise.
Middle: result without smoothing of local approximation functions.
Right: results with smoothing.

5.2 Algorithm
5.2.1 Overview

Here we overview the whole algorithm with 2D-version examples in Fig.5.5. As input,
we take sampling points equipped with oriented normals. We make no assumption as to
the quality of sampling points; input possibly includes noise, outliers and areas with a
lack of sampling as Fig. 5.3 and 5.4. The alphabets in the last of sentences correspond to
the images in Fig. 5.5.

Algorithm: surface reconstruction

1. Generate a spherical cover for the bonding box through Partition of Unity (b).
2. Generate a tetrahedral mesh. Classify the mesh vertices into inside and outside of
the object by Graph-cut (c).

3. Smooth local approximation functions by diffusion approach.

4. Generate a surface mesh by polygonizing the zero-level set (d).
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Fig. 5.5. Processes of the proposed surface reconstruction algorithm in 2D.
(a) Sampling points.
(b) Generated spherical cover.
(¢) The results of Graph-cut; the red points are judged as being inside the object,
while the green ones are deemed to be outside. A part of the graph is depicted
in white.
(d) Reconstructed surface (black line). The contours of f(x) are drawn with
pink and green lines according to the signs of f(x). Blue points mean sampling
points.

First, a spherical cover whose local approximations are linear polynomials is constructed
for a bounding box of a point cloud. Then a PU implicit function whose zero-level set
represents the shape of an object can be obtained. How to generate a spherical cover has
already been explained in Section 3.4.1.

After generating a PU implicit function, Graph-cut is performed to separate the covered
domain into inside and outside areas of the object. The aim of step is recognition of
spherical supports which may be affected by outliers and lack of sampling. The details
are described in Section 5.2.2.

Next, smoothing of local approximation functions is performed by diffusion on a spher-
ical cover. In this step, the differential operators derived in Chapter4 are used. This
smoothing is explained in Section 5.2.3.

Finally, the isosurface with value zero is extracted and polygonized. The polygonization
method adopted in this step is an existing and common one. See Appendix C for more
details.

The integration of Graph-cut approach and the diffusion approach is explained in Sec-

tion 5.2.4.

5.2.2 Graph-cut

Introduction
Since PU is based on a local fitting, it achieves high-accuracy representation of ob-
jects but very sensitive to low-quality data involving outliers and lack of sampling. Our

aim is combining local approach and a global algorithm and develop a more stable al-
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Fig. 5.6. Inside/outside classification.
Left: classification only through partition of unity.
Right: classification through combination of partition of unity and Graph-cut.

gorithm. Several global algorithms have been proposed such as Graph-cut [BK04] or
FEM approach [SLST07], among them, we adopt Graph-cut as a global method rather
than FEM approach. The reason is, we have already a local approximation and just a
global inside/outside classification is enough for outlier removal. In addition, Graph-cut is
practically faster and more memory efficient than FEM approach. The effects of this com-
bination for inside/outside classification are shown in Fig. 5.6, the comparison of results
only with PU approach with results obtained using the combination of PU and Graph-cut.
In both images, the values of approximation function f(x) are indicated with colors red
for high value and blue for low value. Reconstructed surfaces are shown with black lines.
Points judged as inside of an object are indicated with yellow square points while points
judged as outside are indicated with blue round points. The sign inside each point means
the sign of f(x) at the point. Result obtained only with partition of unity has extra
surfaces because of the locality of the partition of unity. The globalness of Graph-cut
helps to overcome this problem as observed in the right image of Fig. 5.6.

Another results for 3D sampling points are shown in Fig.5.3. The input (the left
image) is very noisy data. While the PU-only method fails to detect an appropriate
surface affected by many outliers (the middle image), global-local combination achieves

outlier-robust surface reconstruction (the right image).

Algorithm
The aim of this step is, performing Graph-cut to determine whether the support centers

are inside or outside of the object. The detail of Graph-cut is described in Appendix A.
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Fig. 5.7. Result of classification using Graph-cut.
Left: a 2D-version result. Surface is depicted with yellow green line.
Right: a cross section of a tetrahedral mesh for the head of the Stanford dragon.

The support centers work as vertices in our graph. Thus the support center classification
is equal to the vertex classification in this step. Following the vertex classification, we can
also classify the tetrahedra. Fig. 5.7 shows the classification of tetrahedra. The image on
the left is a 2D-version classification. Black points are sampling points. Blue round points
indicate outside vertices, while yellow squared ones are inside vertices. The signs inside
points are signs of the approximation function f(x) at the points. Yellow tetrahedra have
four inside vertices, blue have four outside vertices, and pink have both types of vertices.
The surface is considered to exist inside the pink tetrahedra. In the left image, the surface
is depicted in a yellow green line. The red-circled point in the left image is regarded as
existing outside following the classification through Graph-cut although the sign of f(x)
claims this point is inside. The image on the right shows a cross section of a resulting
tetrahedral mesh of the Stanford dragon. The coloring rules follow the left image.

In the first of all, a graph on which Graph-cut is performed should be constructed. We
construct a graph using the weighted Delaunay tetrahedrization of a spherical cover: the
support centers for sites and the squared radii for weights. The vertices and edges of
this weighted Delaunay tetrahedrization become nodes and edges of a graph. Our graph
has additional two special nodes called as terminal nodes. Two terminal nodes generally
referred as source and sink respectively represent conceptually the inside and outside of
the object. Note that terminal nodes are purely symbolic and do not have corresponding
vertices of the tetrahedral mesh. Edges incident to a terminal node is referred as terminal
edges. In our graph, each of terminal nodes has terminal edges whose the other ends are

each vertex of the tetrahedral mesh. The structure of the graph to be used in Graph-cut



54 Chapter 5 Surface Reconstruction

is summarized as follows; graph has nodes which are composed of source, sink, and all the
vertices of the weighted Delaunay tetrahedrization, and has edges which are consisted of
terminal edges from each terminal nodes to each vertex of the tetrahedral mesh and all
the edges of the tetrahedral mesh.

In our algorithm, vertices labeled as source represent the points inside the object, and
the other vertices (labeled as sink) represent the outside. We set weak constraints so that
vertices with the values of f(v) > 0 tend to be classified into the source side and otherwise
into the sink side.

We assign the following cost to a terminal edge whose one end is vertex v of the tetra-

hedral mesh:

w(v,source) =0, w(v,sink) = klfl(”)l (f(v) <0)
: (5.1)

w(v, sink) = 0, w(v, source) = k"fl(:)‘ (f(v) >0)

where [, is the average length of edges incident to v. A constant £ means a ratio of cost for
terminal edges to cost for tetrahedral mesh edges. Fig.5.8 summarizes these weighting.
The left images are examples of weights assigned for terminal edges and normal edges and
the right images shows a part of graph and corresponding scalar fields of f(x). Performing
Graph-cut on the graph in the upper right image classifies the vertices into outside and
inside as shown in the lower right image in which edges belong to cut-set are not drawn.
According to our experiments, we recommend to set k to about 5 ~ 15. Details are
discussed in the paragraph Parameter Setting.
The cost for a tetrahedral mesh edge with end points v; and v; is

|f(vi) + [ (v)]

Vi, V5

w(v,vj) = (5.2)

where [, ,; is the length of the edge. Since value f(x) is an approximation of the signed
distance of  from the surface, this cost increases for edges far from the surface. On
the other hand, it decreases for edges crossing the surface because the signs of f(x) at
end points are different each other. Therefore crossing edges tend to belong to a cut-
set. For the implementation of Graph-cut, we utilized codes distributed by Boykov and
Kolmogorov based on [BK04].

If approximation with f(x) is completely correct, the classification with respect to
the sign of f(x) should coincide with the classification in terms of Graph-cut. Actually
inconsistent nodes where classifications are not consistent exist; such a point is indicated
as the red-circled point in the image on the left of Fig. 5.7 and the right image of Fig. 5.8.
As shown in Fig. 5.7, approximations have failed because of outliers. Graph-cut provides

reliable classification even for such areas.
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|f(v2)|

|f (v2)]

Fig. 5.8. Performance of weighting for Graph-cut.
Left: examples of weights assigned for terminal edges and normal edges. Right: a
part of graph.
Upper: the initial graph. Lower: graph after Graph-cut. Cut-set is not drawn.

Triangular mesh extraction. In this chapter, our goal is integrating classification with
Graph-cut and smoothing of local approximations (details are described in the next sec-
tion). But it is sure that the reconstruction algorithm using Graph-cut is a strong method

by itself. However, surface obtained in Step 2 cannot be detected with existing isosurface-
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polygonization method as ones in Appendix C. So we give a polygonization method spe-
cialized for a tetrahedral mesh for a case that the diffusion technique will not be performed
and surface is obtained only through combination of PU and Graph-cut.

The aim of this section is, performing the marching tetrahedra approach for extraction
of a triangulated surface from a tetrahedral mesh [PT90, GH95]. Tetrahedra which have
object-inside point(s) and object-outside point(s), the pink tetrahedra in Fig.5.7, are
considered to intersect with the surface. Here the inside/outside classification means
classification result determined using Graph-cut. In this paragraph, edges consisting of
cut-set are called intersecting edges, and points intersecting with the surface are describes
as intersecting points.

In marching tetrahedra, for each tetrahedron, first intersecting edges are extracted then
a polygonized surface is generated by connecting intersecting points detected on each
intersecting edges. In the left image of Fig. 5.7, intersecting points are shown with green
points and 2D mesh connecting intersecting points is drawn in a light green line. We
determine an intersecting point as a point satisfying f(x) = 0 on an intersecting edge.
Fig.5.9 shows the patterns of tetrahedra which intersect with the surfaces. Generated
surfaces and intersecting points are colored with green. In general cases, intersecting

points are obtained with regula falsi [PTVF93].

Fig. 5.9. Patterns of surfaces generated in tetrahedra.

In our work the signs of f(x) may not be coincident with the classification with Graph-
cut. See Fig.5.10. Inner vertices are shown with yellow squares while outer vertices with
blue circles. The signs inside vertices show the signs of f(x). The left image shows an

ordinary case. The ends of the nearest intersecting edge are consistent. In the right image,
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the red-circled vertex with f(x) > 0 is classified as outside by the result of Graph-cut.
Hence the nearest edge is an intersecting edge which has the same signed endpoints. For
such an intersecting edge, we temporally determine the coordinates of the intersecting
point as the coordinates of one end point whose absolute value of f(x) is less than the

others.

Fig. 5.10. Patterns of surfaces in consistent and inconsistent tetrahedra.
Left: surface in a tetrahedron with consistent edge. Right: surface in a tetra-
hedron with inconsistent edge.

Hereafter, the term vertex means vertex of a triangular mesh generated through the
above modified marching tetrahedra. After triangular mesh generation, obtained surface
mesh has some nonsmooth areas as shown in the left images of Fig. 5.11. This is because
some vertices are temporally set on intersecting points without evaluation of appropriate
positions. Since our goal is generation of smooth surface, we smooth the surface mesh with
bi-Laplacian mesh smoothing. In addition to these areas, we also smooth under-sampled
area which is another reason of nonsmoothness. In this section, under-sampled area is
notified as a vertex which is referred to as under-sampling vertex. Remember that the
vertex of the tetrahedral mesh is the center of a spherical support. We determine under-
sampling vertex as vertex on a tetrahedral mesh edge which has at least one endpoint the
corresponding support including less than ten sampling points.

For calculation of new position of vertex to be smoothed, we iterate the Laplacian
smoothings in two directions [Tau95, KCVS98]. First a vertex v; is moved to position v,

following the equation
v, =v; + XU, (5.3)
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then moved to a new place determined by the Laplacian smoothing in the reverse direction

v = v, — XU (5.4)
where ) is a constant number which we set to 0.5, and U and U’ are operators defined by
u:lzv-—v» u':lzv’.—v’. (5.5)

n - J L n - 7 7 .

where v, is a vertex incident to v; and n is the degree of vertex v;.

Note that this smoothing is performed only for vertices specified above, and no other
vertices are moved. The results in this section are obtained with 30 times iterations. With
these settings, the movement of vertices almost converges.

Fig.5.11 shows the effects of bi-Laplacian smoothing.

Fig. 5.11. Results of bi-Laplacian smoothing. Lower: close-ups of the backs (wireframe)
and the left hind feet.
Left: surfaces before bi-Laplacian smoothing. Right: surfaces after bi-Laplacian
smoothing.
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Algorithm Summary
Here we summarize the surface reconstruction algorithm using combination of partition

of unity implicits and Graph-cut.

Algorithm: surface reconstruction using PU and Graph-cut

1. Generate a spherical cover for the bounding box through partition of unity
2. Construct a graph with the aid of weighted Delaunay tetrahedrization and perform
Graph-cut

3. Polygonize the surface

Step 1 is performed as explained in Section3.4.1. The details of Step 2 are described in
this section. If obtained surface have to be polygonized, modified marching tetrahedra
approach is performed in Step 3. The goal of this chapter is reconstruction performing
Graph-cut and smoothing (descried in the next section) however, the above summary is

for reconstruction only with Graph-cut approach, without smoothing.

Experimental Results

Parameter setting. Results with different values of k£ in equation (5.1) are shown in
Fig.5.12. The reconstructed shapes are affected by the values of k. In the result with
k = 3, shown in the center of Fig.5.12, the lower jaw and the end of the antler are not be
reconstructed. On the other hand, in the result with k = 15, the right image of Fig. 5.12,
these parts are completely appear. In our experiments, setting a larger value for k, some

parts that do not appear with smaller values can be constructed.

Fig. 5.12. Reconstructed models with different k values in equation (5.1).
Left: sampling points.
Center: result with k£ = 3.
Right: result with k£ = 15.
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Robustness. In Fig.5.13, we show the results for the Stanford dragon raw data that is
very noisy and has areas of undersampling as shown in the close-up in the left image. In
the result meshes in the center and the right images, holes are filled with desired-shape

meshes. These results exemplify the advantage of a global method to handle data with

lack of sampling.

Fig. 5.13. Hole-filling effect achieved with the aid of introducing Graph-cut.
Left: close-up of a hole caused by lack of sampling.
Middle: close-up of a hole-filled mesh.
Right: whole of the Stanford dragon.

Performance. RAM is required about 500 Mbytes for processing one million input points,
and it increases linearly.
For processing a few million points, proposed algorithm takes a few tens of minutes.

This is a issue to be solved and we discuss about this problem in Section 5.3.

Comparison. Comparison for data with several outliers and lack of sampling, is shown in
Fig.5.14. The sampling points are shown in (a). Parameters are set for the error tolerance
to 1.0 x 1073 in MPU, maximum depth of octree for 9 in Poisson surface reconstruction,
error tolerance € to 1.0 x 1073 in ours. The result obtained using MPU, (b), has largely
deformed shapes on its back and top of head which are considered as influences of lack
of sampling. In addition, some extracomponents appears near the tail. Poisson surface
reconstruction gives a roughly desired shape,(c), but its smoothing effect for noise included
in this data is too strong and the details in eyes and body are smoothed out. The
combination of local and global algorithm gives a smooth mesh with precise representation

without being affected by outliers and lack of sampling, see the image in (d).



5.2 Algorithm 61

Fig. 5.14. Comparison of surface reconstruction through Graph-cut approach for Stanford
bunny with other methods.
(a) Sampling points involving outliers (red-circled points) and lack of sampling.
(b) Result generated using MPU.
(c) Result generated Poisson surface reconstruction.
(d) Result generated combination of partition of unity and Graph-cutO

Here are another examples showing the effects of combining Graph-cut. In Fig.5.15, we
compared our results with MPU proposed by Ohtake et al. [OBAT03] and with Poisson
surface reconstruction proposed by Kazhdan et al. [KBH06]. Input data is low-quality
scanned data ((a)). Especially challenging parts are fangs in the mouth and details of
the fingers. As parameters, for Poisson surface reconstruction we set the maximum octree

level as 10, for MPU, error tolerance is set as 1.0 x 1072, and for ours, the octree level as
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Fig. 5.15. Comparison of surface reconstruction through Graph-cut approach for Shiisa-A
with other methods. In the lower columns, close-up views of the mouths and
right feet are shown.

(a) Sampling points.

(b) Results generated using MPU.

(c) Results generated using Poisson surface reconstruction.
(d) Results generated using proposed algorithm.
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8 and the error tolerance € as 1.0 x 1073,

Fig. 5.15(b) shows surface generated through MPU which have many tiny extra com-
ponents. Note that MPU approximates objects with quadratic functions while proposed
algorithm uses linear functions. It enables MPU generate very precise results, but fitting
the second order approximations is sensitive to noise.

Another reconstructed surface generated with Poisson surface reconstruction which is a
global approach is in Fig.5.15(c). Poisson surface reconstruction can generate watertight
meshes, but the results may end to be too smooth and many important details may be
lost. Moreover, especially for sparse and noisy data, the results tend to be shrunk, see
the close-up of the foot.

Our algorithm can deals with low-quality scanned data as Poisson surface reconstruc-
tion, see Fig.5.15(d). Moreover fangs and details of the fingers are successfully recon-
structed. The reason is that Poisson surface reconstruction is the zeroth order approxima-

tion (a scalar value is assigned to each octant), while ours is the first order approximation.

5.2.3 Diffusing Local Approximations
Introduction

For smooth shape representation, Laplacian smoothing of a gradient field is performed
on a spherical cover. Since we operate geometrical processings on a spherical cover, using
discrete differential operators specialized for a set of spherical supports is preferred than
using general differential operators for a traditional orthogonal grid. Not only smoothing
a gradient field, but also the local approximations are smoothed reflecting the smoothed
gradient field.

Our smoothing for gradients of local approximation functions is based on the diffusion
of a gradient field. Fig.5.16 represents the main idea. Isosurfaces of local and global ap-
proximations are shown with dotted and solid lines respectively. In the initial state (the
left image), each local approximations are not matched with surrounding local approxi-
mations. So the obtained global isosurface in this state is not smooth. Proposed diffusion
technique makes local approximations consistent with each other (the right image). As a
result, a smooth global isosurface is obtained.

This smoothing can handle adaptively sampled data, and enables topological change
unlike the existing smoothing techniques. Experimental results for 3D sampling points
are shown in Fig.5.17 and 5.18. In both examples, in initial surfaces, strong influences
of noise appear as bumps and extracomponents, but do not exist in the surface after
smoothing. Disappearance of extracomponents means a topological contribution of pro-

posed algorithm.
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The concept is inspired by normal-based smoothing methods [Tau01l, OBS02, CT03|
that smooth normals then move vertices. The novelty of our approach lies in its use of

differential operators on a spherical cover with linear functions.

Fig. 5.16. 2D images of diffusion of local approximation functions.
Left: isosurfaces generated using PU.
Right: isosurfaces after the smoothing of local approximation functions.

(a) (b) ()

Fig. 5.17. Examples of surface reconstruction with diffusion.
(a) Sampling points. (b) Result generated using only partition of unity ap-
proach. (c) Result generated using partition of unity approach and diffusion

technique.

Algorithm

After local approximation functions are obtained through spherical covering, smoothing
of the gradient field and updating of local approximations are alternately iterated. In each

iteration cycle, first, gradients of f(x) is smoothed through Laplacian smoothing with the



(b)
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Fig. 5.18. Effects of the smoothing of local approximation functions.

(a): Sampling points. (b): Initial surface obtained using PU. (c): Results of
smoothing for the model in the left image. For (b) and (c), in upper row, the
whole objects and in the lower row, cross-sections are displayed.

discrete Laplacian operator on a spherical cover. Then, each local approximation function
is updated to have the smoothed vector as its gradient.

Here we show an overview of one cycle of iterative PU smoothing. Fig.5.19 shows the

overview of the whole smoothing.

Algorithm: smoothing partition of unity implicits

1. Initialize the vector field with the gradient of f(x):
set v; = V f(c¢;) for each sphere center ¢;
2. Update {a;}: smooth v; with Laplacian smoothing. Set updated vector v; to &;

3. Update {3;}: calculate §; satisfying ©; = Grad (f(¢;)). Update §; to f;

T\

/_\

Evaluation of
the gradient field

Laplacian smoothing
for the gradient field

Integrate
the smoothed gradient field
(solve Poisson equation)

V\_/_J

Fig. 5.19. Overview of smoothing of partition of unity implicits.
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The details of each steps are described in the following sections.

Generating Gradient Field
The aim of the first step of the Algorithm: smoothing partition of unity implicits
is, initializing a gradient field with the gradient of an implicit function f(x). Remember
that function f(x) is determined by the weighted average of local approximations:
flx) = Liwil@)gilz) (5.6)
> wilw)
where g;(x) is a local approximation function and w;(x) is a weighting function. The

gradient of f(x) is

Vi(z) = (V (Z wz@)ﬂz(“’)) sz(w) - sz(m)gz(w)v (Z wz($)>> (5.7)

= ((Z Vw;(z)g:(x) + sz(w)Vgl(w)> Z w; ()

Since f(x) is a linear combination of linear functions {g;(x)}, its gradient Vf(x) is a
constant vector.
In Step 1, each support center ¢; is assigned the value of above gradient V f(c;) as its

initial vector v;. Note that this initialization satisfies Assumption 4.3.1 in Chapter 4.

Smoothing of Gradient Field
In Step 2, vectors {v;} are smoothed with Laplacian smoothing. Laplacian smoothing

replaces a vector v; with a new vector v; satisfying

Lap(v;) = 0. (5.8)

In the above equation, Lap means the discrete Laplacian operator on a spherical cover,
defined in equation (4.27) in the previous chapter. Following equation (4.27) and (5.8),

smoothed vector ©; can be obtained through solving

3
Lap(d;) = —= PORCRICIE (5.9)

=0.
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From above, equation
;i Zj i = Zj Di.jV; (5.10)
is derived. Now smoothed vector is obtained:

L2205,

= =i T 5.11
R S (5.11)

Update of Local Approximation Functions
In the previous paragraph, how to smooth the gradient field is described. In the final

step, local approximation functions are updated reflecting the smoothing of the gradient

field.

..........................

Fig. 5.20. Updating of a coeflicient vector of a local approximation function in 2D. Spher-
ical supports with coefficient vectors and isosurfaces of associated local approx-
imations.

Left: initial state.
Right: after updating of a coefficient vector of the pink-colored support.

We update local approximations {g(x)} with Poisson equation reflecting the smoothing
of gradients {v;}. This updating is consisted of two steps: updating coefficient vectors
{a} and updating constant terms {g;}.

The update of a coefficient vector a; to &; is realized by a substitution

Q; = ;. (5.12)

An updated coefficient vector &; is a weighted average of gradient vectors of neighbors
of s;, a support under consideration, see equation (5.11). Fig.5.20 shows the effects of
updating of a coefficient vector. The left image shows the initial state. The blue-colored
arrow is a coefficient vector «; of the pink-colored support, it is also the gradient vector

because g;(x) is linear. «; is not matched with surrounding gradients. After updating, a
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smoother vector field is obtained and the gradient of isosurfaces are matched with others,

see the right image.

...................................................

Fig. 5.21. Updating of a constant term of a local approximation function in 2D. Spherical
supports with isosurfaces of local approximations, and a global isosurface.
Left: initial state, coefficient vectors have been smoothed.
Right: after updating of a constant term of the pink-colored support.

Updating constant terms is equivalent to updating f(x) so that it satisfies

Grad (f(¢;)) = v;. (5.13)

For simple computation, here we make an assumption that the center of a spherical support

is not included in other spherical supports, like stats in Fig. 5.20;
flei) = gilei) = Bi. (5.14)

We obtained good results for all examples in this chapter under this assumption.

As mentioned above, the purpose of this step is updating a scalar field satisfying equation
(5.13). The left hand side of equation (5.13) is only composed of a divergence term, it
implies that the smoothed vector field must be represented with no curl-term. This
constraint is very strong, and this is the reason of that solving this equation directly is
difficult. So we apply the discrete divergence operator on the both hand sides and solve
the obtained weak form. Note that we can use the discrete divergence operator because
the both hand sides of equation (5.13) are constant vectors. The obtained weak form is a

Poisson equation:

Lap (f(c:)) = Div (5,). (5.15)

In the following, how to solve equation (5.15) is explained. The solution is obtained

solving a minimization problem:

|Lap (f(ci)) — Div (9;) ||* — min. (5.16)
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Lap (f(¢;)) — Div (9;) is a linear function of f3;, a verification with expansion of this
equation will be described later.
Before calculating a complex formula, let us consider a simplified linear function ax + b

for x € R. In this case, a minimization problem becomes

(az + b)* — min. (5.17)

It is clear that the minimizer xz satisfies the below equation derived from differentiation
with respect to x:
a(ax +b) = 0. (5.18)

So the minimizer x is described as .
=——. 5.19
o= (5.19)
Get back to the solution of a constant term ;. First, let us verify that Lap (f(¢;)) —
Div (9;) is a linear function with regard to f;:
3

Lap (f(c;)) — Div (9;) = 5 Zj ¢i,;(f(cj) — flei)) (5.20)
3

g >, 00 (e —ei)
= 75)& Zj ¢i,;(B; — Bi)
Ti% Zj ¢i,j0; - (¢j — ¢;)
= —75)& Zaﬁmﬂz‘ + 7351 Z¢i,j (B; — ;- (¢ — ¢i)).-
j ;

Therefore, the analytical solution of a linear function in equation (5.19) can be applied.

In this case, the a and b of equation (5.17) are

3
a = _TiSi Zgﬁid (521)
J

and
3

s ; i (B —0; - (¢ — i) (5.22)

respectively. Therefore, the solution BZ to which §; is updated becomes

B. _ n?’& Zj Gi,j (ﬁ] —vj - (Cj —¢))
l T 2 i

200 (8- (i —¢5) + )
- Zj ¢z‘,j .

Fig.5.22 shows the effects of the above smoothing. Sampling points displayed in (a)

(5.23)

includes some amount of noise. Surface directly reconstructed with partition of unity is
shown in (b). Surfaces are very irregular affected by noise. After the smoothing of local

approximation functions, these are smoothed out as shown in (c).
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() (d)

Fig. 5.22. Isotropic and anisotropic smoothing for the block model.
(a) Input points.
(b) Result of reconstruction with partition of unity approach.
(c) Result generated through isotropic smoothing.
(d) Result generated through anisotropic smoothing.

Anisotropic Smoothing of Gradient Field

As can be seen in Fig. 5.22 (c), models obtained through above smoothing may lose their
edges. This detail lost arises because of the isotropy of the discrete differential operators
proposed in Chapter4. In order to preserve edges, we modify this smoothing scheme to

anisotropic one introducing an anisotropic term into the smoothing in updating of a; and
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0; of local approximation functions.
To preserve highly curved regions, we propose the anisotropy factor similar to that
proposed by Perona et al. [PSM94]. We propose the use of the angle-based anisotropic

factor
1

= —— 5.24
Vii = T gr (524)

where 0; ; is the angle between gradients v; and v;. See Fig. 5.23 which shows the meaning
of this anisotropic factor in 2D. This factor is introduced into the smoothing of v (equation
(5.11)) and the updates of constant term of local approximation (equation (5.23)). The

weighting function ¢; ; in these equations are replaced with ¢; ;1; ;.

Fig. 5.23. Angle-based anisotropic factor.
Left: cross-edge gradients v; and v; with distinct directions.
Right: angle 6; ; is made by v; and v;.

An example of the effect of this anisotropic smoothing is shown in Fig.5.22 (d). With
the aid of the anisotropic smoothing, sharp edges and corners are better preserved as

shown in (d) than the result obtained with the isotropic smoothing in (c).

Detail Preservation

In surface reconstruction, preserving details is just as important as smooth representa-
tion. To avoid losing details caused by oversmoothing, we introduce terms that make
the approximated surface fit the sampling points. The effects of this modification can be
seen in Fig.5.24. After applying several iterations of PU smoothing for an initial model,
Fig.5.24 (a), if the fitting terms are not applied, the details are smoothed out as shown
by the image in (b). On the other hand, the results with the fitting terms demonstrate

that the details are preserved well, see the image in (c).
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(a) (b) ()

Fig. 5.24. Detail preservation.
(a) Initial model generated with partition of unity approach.
(b) Smoothed model without fitting to sampling points.
(c) Smoothed model with fitting to sampling points.

e Detail Preservation for Coefficient Vectors

For smoothing and fitting a coefficient vector «;, a term that makes «; fit to the
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Fig. 5.25. Idea of detail preservation for updating of coefficient vectors.

weighted sum of the normals of sampling points is introduced. Let us consider a
vector v; to be smoothed which corresponds to v; in the simple smoothing scheme
in equation (5.8). Let s; be the support assigned v; and {p} be sampling points
inside s;, and {ny} be those normals, then smoothed and fitted vector v; is obtained
as the minimizer of the following minimization problem:

[Lap (6:)]* + An > _ oxwi(pr) [|6; — mp|* — min. (5.25)
k

Coefficient A\, means a priority ratio between smoothing and fitting. It is set to a
sufficiently large number, we usually set it at about 107. A number o} means the
confidence level of pj, (details below).

The minimizer of this problem can be analytically obtained in the same manner
as the no-fitting version. Let us consider the following simplified form for x € R:

||ax+b||2+)\Zakwi||ckx+dk\|2 — min. (5.26)
k

The minimizer can be obtained through an argument similar to the no-fitting ver-

sion:
ab + A Zk kaickdk

a?+ XY, opwics

(5.27)

Let us apply this analytical solution to the x component in equation (5.25). The

terms a, b, ¢k, and dj, in equation (5.27) become as follows:

3
S Z@‘,jwi,j, (5.28)
J

a = —
o5
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3
b= 5 D $isViivia: (5.29)
J
e =1, (5.30)
di = —Na (5.31)

where v;, and ny, are x components of v; and my respectively. Values of ¢
and dj are for each sampling points, while ¢ and b are determined depending on
neighboring supports. Note that in the case the fitting effect does not work with
value zero for A, the above minimizer is equal to the one of the non-fitting version.
For y and z components, similar equations can be derived. The following is the

minimizer represented with vectors:

2
A (r?;v) 25 Pigtig 225 Gi Wi vi + An Doy okwi(Pr) Tk

(35)2 (Zj %a‘%‘,j)g + An 25 ok wi(pr)

Coefficient vector «; is updated into the above v;.

e Detail Preservation for Constant Terms

Similar to the updating of coefficient vectors, the update of constant terms can

gi(x) =0

Fig. 5.26. Idea of detail preservation for updating of constant terms.

be described as a minimization problem:
(Lap (f(¢i) = Div (8:))* + Ay opwi(pr)g; (pr) — min,  (5.33)
k

where ), is a constant introduced for the same purpose as \,, and set at a sufficiently

large value, 10° in our implementation. The terms a, b, ¢, and dj, in equation (5.27)
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become ;
“= TS, Z i Vijs (5.34)
J
3

b=—= 6igvi; (B —vj(e; —ei)), (5.35)

1~ ]
ce =1, (5.36)
dp = & - (¢i = Pr)- (5.37)

Vector ¢ is a coefficient vector updated with smoothing and fitting scheme.

The minimizer of (5.33), that is the updated constant term is

3 2
B; = <m&> Z]. Gi, i j Zj Gi i (6 - (ei — ¢) + B))
FApQ; - (Zk orwi(pr)(ci — Pk)>

3\’ 2
(n&) <Zj¢i’j¢"fj> A Y, owi(pr) | - (5.38)

e Confidence of Sampling Points
Confidence level o}, indicates the reliability of a sampling point p. In Fig.5.27,
confidence maps of Shiisa-A model are shown. The colors indicate blue for reliable
points and red for not-reliable points. As shown in the right image, outliers are

assigned low confidence values.

Fig. 5.27. Confidence maps of sampling points for Shiisa-A.

In cases where confidence values are offered with a scanner, using these values

is one solution. In other cases where such values are not available, we propose
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assigning a confidence value o) explained below. This value is defined for each

sampling point pg:
> wi(pr)

This means the weighted average of the degree of success of local approximations.

O =

Weighting function w;(x) is the same as the one of the spherical covering. The
degree of success of local approximations 7; is measured for each support in reference
to the distribution of sampling points inside a support. Here is the definition of 7;

for a support s;:
i = exp (—2w}) (5.40)

where w; is the angle between the eigenvector IN; with the smallest eigenvalue
obtained with PCA for {px} and, the vector from the centroid G; of {p} to the

support center c;.

G, G;

Fig. 5.28. Idea for confidence value oy.

Left: spherical support with uniformly sampled points.
Right: spherical support with non-uniformly sampled points.

See Fig. 5.28, examples of 2D spherical supports with sampling points (black dots).
The left image shows a spherical support with uniformly sampled points and the
right image shows non-uniformly sampled case. In each images, the approximation
line for {py} obtained with PCA is shown in dark green, and corresponding eigen-
vector IN; is shown with a light green arrow. This vector IV; is an approximated
normal of {py} in terms of sphere s; [HDD'92]. The centroid G; of {px} is indi-
cated with a large gray point. When the sampling points distribution is uniform,
vectors IN; and ¢ — G; have almost the same direction, and the value of 7; increases.
If the sampling density changes inside s;, their directions are different each other
and 7; decreases. For a sampling point near a lack of sampling, the value of oy

becomes small.
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e Convergence
Introducing the fitting terms helps smoothing to converge quickly. As can be

observed for Fig.5.29, the results from five iterations of smoothing, (b), have no

notable difference with results from twenty iterations, (c).

Fig. 5.29. Convergence of smoothing iteration.
(a) initial model obtained with partition of unity approach.
(b) results with five times iteration of smoothing.
(c) results with twenty times iteration of smoothing.

Algorithm Summary

Here we summarize the surface reconstruction algorithm using diffusion technique.

Algorithm: surface reconstruction using diffusion technique

1. Generate a spherical cover for the bounding box through partition of unity
2. Evaluate the confidence of the sampling points

3. ITteratively apply smoothing of partition of unity implicits preserving details

4. Polygonize the zero-level surface

Step 1 is performed as explained in Section 3.4.1. Steps 2 and 3 are newly described in this
section. The number of the iterations in Step 3 is five in our experiments for all models
in this thesis. In the last step, the zero-level surface is polygonized using the SurfaceNets
[Gib98] with uniform sampling around only the zero-level surface as proposed in [Blo88].
We set a sampling point with a high confidence value as a seed point for detecting the

zero-level surface.
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Experimental Results

Parameter setting. All input data in this section 5.2.3 (except Fig. 5.4, 5.31, and 5.36) are
noisy raw scanned data. All parameters except ¢ are fixed unless the settings are described.
That is, the only free parameter required by the diffusion algorithm is approximation
error tolerance €, which depends on the noise level specified by the scanning device. A
comparison of results with different values of ¢ is shown in Fig. 5.30. For the details of ¢,

see Section 3.4.1.

Fig. 5.30. The reconstructed meshes with different values of e.
From left to right, e = 1.0 x 1072,5.0 x 1072,2.5 x 1072, and 1.25 x 10™3.

Noise robustness. The robustness for noise is demonstrated in Fig.5.31. The sampling
points are obtained from meshes added Gaussian noise. The noise level on the right model
is twice as large as that on the left model. The value of the standard deviation of the noise
on the left /right model is a quarter/half of the averaged edge-lengths. The reconstructed
meshes are topologically correct even for data with large amount of noise.

In Fig.5.32, the robustness for normal noise is demonstrated. For data with normals

randomly rotated by 30°, our approach succeeded in reconstruction (b). For a rotation
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angle of 60°, the reconstructed model is affected in terms of smoothness (d). With setting

An to zero, even for such cases, a smooth surface is obtained (e).

Fig. 5.31. Noise robustness.
Left: sampling points obtained from noisy meshes.
Right: reconstructed surface meshes.

Performance. Timing results are reported in the Table5.1. In order to perform PU
smoothing efficiently, we construct a graph of adjacency of supports and store it in a
list data structure.

Following our observation, the average of degrees of the sphere intersection graph is
about 100, which makes processing large data sets difficult. According to our experiments,
reducing the degree with shrinking the radii of supports to 0.7 times the original radii
reduces the computational time and space. The average of degree after this shrinking is
about 40. The results obtained with this shrinking are not different from those without
shrinking. This shrinking is only for constructing a sphere intersection graph, so we use

the original radii in all the other processes including the calculation of ¢; ;.

Comparison.  We compared our results with MPU [OBA 03] and Poisson surface recon-
struction [KBHO6] for a Shiisa-A model, see Fig.5.33. In the MPU results, the peak on
its beard stretches and extra components appear around the tail. Poisson surface recon-

struction gives a surface on which details are lost because of its smoothing effect. On the
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Fig. 5.32.

Normal noise robustness.

(a) Data with normals rotated randomly by 30°.
(b) Reconstructed mesh for sampling points in (a).
(c) Data with normals rotated randomly by 60°.
(d) Results for sampling points in (c).

(e) Results for sampling points in (c) with A, = 0.

# € # Time [min:sec] Peak #
Model | pts. (x1073)  supps. init.  smooth.  poly. RAM tris.
Bunny | 362K 2.5 176K 0:18 0:19 0:14 74M 315K
Buddha | 3.2M 2.5 540K 2:05 2:26 0:58 234M  1.0TM
Buddha | 3.2M 1.25 2.94M 3:41 13:35 1:08 1.23G  1.08M
Armadillo | 2.3M 1.0 7.35M 5:42 36:21 3:49 3.24G  3.30M
Table. 5.1. Computational time and performance of surface reconstruction.

From left to right: the number of sampling points, value of €, the number of
supports, computation time for initialization of PU, for smoothing, and for
polygonization, the maximum memory space which our algorithm used, and
the number of triangles of the result mesh.

other hand, the proposed method generates a smooth surface with the details preserved

well, see the close-ups in the lower columns of Fig. 5.33.

Another comparison for a large data set with Poisson surface reconstruction is shown

in Fig.5.34. The reason that Poisson surface reconstruction is selected as a comparative
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Fig. 5.33. Comparison of surface reconstruction method using diffusion technique with
other methods.
(a) Sampling points. (b) Results with MPU.
(¢) Results with Poisson surface reconstruction.
(d) Results with surface reconstruction method using diffusion technique.

algorithm is that it has excellent reconstruction capabilities, and the software required is

freely available. The parameters are, for Poisson surface reconstruction, set to 11 for the
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level of the octree, and for ours, ¢ = 1.0 x 10~3. Although both methods work well, in the
close-ups of hands, it is observed that details are better preserved with our method (see
the bumps in hands). We consider this is because the proposed algorithm uses first- and
zeroth-order approximation, while Poisson surface reconstruction uses only zeroth-order
approximation.

Another example is shown in Fig. 5.35. The surface is gradually sparsely sampled. The
results with Poisson surface reconstruction shrink near the tail, but the results generated
with proposed method represents a rough shape of the tail.

One distinct property of the diffusion technique is that reconstructed surfaces tend to
extend in the tangential directions. See the tail of the dragon in Fig.5.35. A more clear
comparison of this property can be seen in Fig.5.36. The sampling points are vertices
of parts of a noisy octahedron. The results obtained with Poisson surface reconstruction
tend to be rounded near areas where there is a lack of sampling, because of shrinking
problem. On the other hand, in the results from the proposed method, each face extends
in the tangential directions. This extension is caused by diffusion of normals. In contrast,
Poisson surface reconstruction solves Laplacian equation on the region where sampling is

missing. Thus the missing parts are filled with minimal surfaces.

5.2.4 Integration of Graph-cut and Diffusion
Introduction

In this section the integration of Graph-cut and diffusion algorithms is proposed. As
mentioned above, Graph-cut provides outlier-robustness and diffusing local approxima-
tion functions gives noise-robustness, so combination of these two algorithms is expected
to handle low quality data well. We use the results of Graph-cut to determine inconsistent
spherical supports which are considered wrongly approximating. And then the smooth-
ing algorithm diffuses the local approximation functions of consistent spherical supports

allover the covered area.

Algorithm
The overview of this integrated algorithm is below. The first and the last steps are
completely the same as the previously explained ones. The Graph-cut and the diffusion

are basically same, and the difference parts are described in the below paragraphs.
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Fig. 5.34. Comparison with Poisson surface reconstruction.
Left: Results from the Poisson surface reconstruction.
Right: Results from smoothing of local approximation functions.

Algorithm: surface reconstruction with Graph-cut and diffusion

1. Generate a spherical cover through Partition of Unity

2. Operate the Graph-cut and change some local approximation functions into zero
functions

3. Diffuse the local approximation functions of the nonzero local approximation func-
tions

4. Polygonize the zero-level set
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Fig. 5.35. Comparison of results for gradually down-sampled points. Lower column dis-
plays close-ups of the models in the middle column.
(a) Sampling points. (b) Results with Poisson surface reconstruction. (c) Re-
sults with smoothing of local approximation functions.

Graph-cut for integration The only difference with the algorithm in Section 5.2.2 is the
graph. In the previous Graph-cut algorithm, graph is constructed using the tetrahedral
mesh obtained from the sphere intersection graph (SIG). In this integrated algorithm,
the SIG serves as the base structure of the graph as the tetrahedral mesh in the previous

algorithm. It is needed for the all supports to be classified in the following smoothing step,
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Fig. 5.36. Comparison of the properties of reconstructed surfaces.
Left: the original noisy mesh (top) and partially sampled points with normals
from the above mesh (bottom). Middle: results generated by Poisson surface
reconstruction. Right: results generated by smoothing approach for local ap-
proximation functions.

so the tetrahedrization is not suitable for this graph generation (tetrahedrizaion may omit
several supports). This change is reasonable since a polygonization grid structure is no
longer needed to be generated in this step. The polygonization is performed with another
scheme in the latter step, maybe using another grid structure. In addition, since the
tetrahedral mesh generation is pretty time-consuming, so it also saves lots of calculation
time.

With the results of Graph-cut, the spherical supports which the signs of approximation
function at the centers are different from the results of inside/outside classification through
the Graph-cut can be recognized. In this thesis, such supports are referred as inconsistent

supports.

Diffusion for integration After the Graph-cut, the local approximation functions associ-
ated with inconsistent supports are changed into the zero functions. As a result, only the
local approximation functions of the consistent supports can be diffused. The diffusion
scheme basically follows the algorithm in Section 5.2.3. The values of confidence of incon-
sistent supports are set to zero and, on the other hand, the other supports has the same
confidence values as the ones proposed in the equation (5.40). So the new definition of
the confidence of a support s; is

(5.41)

e (—2w?) (s is consistent)
10 (s; is inconsistent)
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Experimental Results

Here are some experimental results obtained from the above integration. The results
show that the classification through Graph-cut can handle low quality data well.

The first example is for scanned data with 1161580 points including 50 outliers. The
points except the outliers are obtained with scanning the figure in the left image of
Fig. 5.37. The points added 50 outliers are shown in the right image. The scanned points
include web-like clouds of outliers between the forefoot the ball. Fig.5.38 shows the re-
constructed surfaces for this data. In the result with only the diffusion technique, large
extra surfaces appear around the cat. With the help of the Graph-cut, such surfaces do
not appear any more. And note that the forefoot and the ball are correctly reconstructed.

The images in Fig. 5.39 show the results of Graph-cut for the centers of supports. The
left image shows the centers of the all supports. This means the unclassified state. Ap-
plying the Graph-cut, the centers are classified into inside or outside of the object. The
inside-classified centers are shown in the middle image. It can be seen that the clouds
of outliers are removed. The right image shows the inconsistent centers. The results of
recognition of outliers with thresholding the confidence values (for all data in this chapter,
we generally set 0.007) of the input points are shown in Fig. 5.40. The outliers around the
cat figure are recognized well.

Fig. 5.41 shows the results for gradually downsampled data with 294259 points including
100 outliers. Even the head, sparsely sampled area, is well reconstructed.

The images in Fig. 5.42 are the results for sampling points with large lacks of sampling
and 20 outliers. The number of the total points is 28751. The result with only diffusion
technique, extra surfaces are generated near the back. With the aid of the Graph-cut, the
smooth shape is reconstructed. With comparing with the result with only the Graph-cut
and bi-Laplacian smoothing, it can be observed that this integration gives more smooth

shapes.

5.3 Discussion

Spherical Cover

Normal Dependency. A drawback of this process is a necessity of normals. In the case
many normals are flipped proposed algorithm cannot offer a correct result, although it

can handle data with a certain amount of noise.

Graph-cut
Time Consumption in Tetrahedrization. Omne bottleneck of Graph-cut approach is time-

consumption. For processing a few million points, our surface reconstruction using com-
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Fig. 5.37. A cat figure and its scanned points added outliers.

bination of partition of unity and Graph-cut takes a few tens of minutes, while both
Poisson surface reconstruction and MPU work on several minutes. The most expensive

procedure is tetrahedrization. We plan to improve this operation in our future work.

Determination of parameter k. Another issue is finding a proper value of k£ in equation
(5.1). Fig.5.43 shows this problem. With value & = 2.3, the left arm does not appear while
the other parts are well reconstructed. In our current algorithm, the value of k is fixed
however, results in Fig. 5.43 suggest to make the value of k adaptive to the complexity of

the object or the density of sampling points.

Diffusion of Local Approximation Functions

Validity of Linearity of Local Approximations. For smoothing local approximations with
diffusion technique with the aid of discrete differential operators, we made assumption
that local approximations are linear. This approximation may be considered as a limita-
tion, but linear approximation is sufficient for surface reconstruction because its output
generally takes the form of a polygonal mesh. Using local linear approximations tends
to generate more supports than the quadratic approximations of MPU [OBAT03], but
in terms of noise robustness, algorithms employing linear approximation are better than

those with high-order approximations.

Expansion of Local Approximations. The linearity of local approximations is not a limita-

tion for surface reconstruction. But it is sure that employing various functions as local
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Fig. 5.38. Surfaces obtained with the integration of the Graph-cut and diffusion tech-
nique.
Left: surfaces obtained with only the diffusion.
Right: surfaces obtained with the Graph-cut and the diffusion.

approximations helps proposed smoothing to be used in more applications. So it is worth
changing the primitive functions to be quadratic and cubic functions. For this purpose,
redefining the discrete operators is needed. For a related issue, see the discussion in

Section 4.5.

Exclusivity of Support Centers. In updating local approximations, we assume the centers
of supports are not included in other supports. Good results are obtained under this
assumption however, we observed that most centers actually exist in more than one sup-
ports. The influences of this assumption requires more research. We consider that the

spherical cover generation based on an octree helps generation of good results.

Representation of Sharp Feature. We proposed anisotropic smoothing which roughly pre-
serves edges, but more precise representation is needed in many applications. Represen-

tation of sharp features such as edges and corners is another issue.

Time Consumption in Diffusion. One drawback of the iterative diffusion technique is that
the proposed method is three—five times more time-consuming than that of the Poisson
surface reconstruction. However, our PU smoothing based on iterative averaging can be

easily parallelized by using multi-core CPU.
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Fig. 5.39. Results of the classification with Graph-cut for the centers of supports.
Left: the centers of the all spherical supports.
Middle: the centers of supports classified into inside.
Right: the centers of inconsistent supports.

Fig. 5.40. Results of the classification using the confidence values.
Left: the input points with high confidence values.
Right: the input points with low confidence values.

Processing Higher-Order Data. Possible applications of proposed diffusion technique in-
clude volume processing and the smoothing of more attributed vectors such as 4D vectors
and texture data. Proposed diffusion technique can handle these higher-order data as well

as 2D and 3D data demonstrated in this thesis.

Integration of Graph-cut and Diffusion
Parameter Setting. For the integration of the Graph-cut and diffusion, the parameters

are set as follows:
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Fig. 5.41. Results of the integration approach for gradually sampled and outlier-added
points.
Upper: input points. From left to right, the all points, the points with high
confidence values, and the points with low confidence values.
Middle: the centers of the spherical supports. From left to right, for the all
supports, for the supports classified into inside, and for the inconsistent sup-
ports.
Lower: reconstructed surfaces. From left to right, surfaces obtained with only
PU, surfaces obtained with diffusion, and surfaces obtained with the Graph-cut
and the diffusion.

e approximation error tolerance e: 2.0 x 1073 for the data in Fig. 5.37 and Fig. 5.41,
and 5.0 x 1073 for the data in Fig.5.42.

e k of the Graph-cut: a value between 27 and 30.

e fitting parameters \,, and A, for diffusion: 1.0 x 107 and 1.0 x 10° respectively.

These settings cause some lost of details as shown in the final surfaces in Fig.5.41. The
scales in the neck and the details of the face are smoothed. This is because that the

settings of the approximation error tolerance and fitting parameters. If these values are
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Fig. 5.42. Results of the integration approach for sampling points with lacks and outliers.
Upper: input points. From left to right, the all points, the points with high
confidence values, and the points with low confidence values.

Middle: the centers of the spherical supports. From left to right, for the all
supports, for the supports classified into inside, and for the inconsistent sup-
ports.

Lower: reconstructed surfaces. From left to right, surfaces obtained with only
PU, surfaces obtained with diffusion, and surfaces obtained with the Graph-cut
and the diffusion.

set to more strict values, the details will be reconstructed, but extra surfaces may exist.
The images in Fig.5.44 shows results with ¢ = 2.0 x 1072, and A, = 1.0 x 107 and
Ap = 1.0x 10 respectively. The details are better represented than the results in Fig. 5.42,
but undesired surfaces remain. This is a trade-off between precise representation and
no-extra-component reconstruction. In the case that precise representation is required,

post-processing to remove undesired surfaces will be needed.
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Fig. 5.43. Problems caused by fixing value of k in equation (5.1).
Left: sampling points. Right: reconstructed model with k = 2.3.

Fig. 5.44. Results of the integrated approach with different parameters.
Left: ¢ = 2.0 x 1072,
Right: A, = 1.0 x 10" and A\, = 1.0 x 10°.

5.4 Summary

In this chapter, we proposed a surface reconstruction algorithm as an application of a
spherical cover with differential operators. Proposed algorithm has advantages of noise
robustness and detail-preservation. Robustness for outliers is achieved with combination

of partition of unity approach and Graph-cut. Robustness for noise is mainly achieved with
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the aid of a diffusion of local approximation functions which use the discrete differential
operators. Robustness for lack of sampling is realized with both proposals. In addition, a
measure of confidence of sampling points specialized for a spherical cover is also proposed.

The local approximations in this algorithm are linear functions. Changing these func-
tions to various functions is one of future tasks to be performed, and we also plan to

preserve sharp features.
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Chapter 6

Skeletal Structure Generation

Skeletal structures are 2D skeletal sheets or 1D skeletal curves obtained with simpli-
fying a 3D solid. Analysis with skeletal structures helps us recognize object’s shape intu-
itively and performed especially in areas involving deformation, recognition, and matching.
In this thesis we treat only 2D skeletal sheets as target skeletal structure and simply refer
to such a structure as skeletal structure or skeletal sheet. In this chapter, we propose an
algorithm to generate a surface mesh robustly and directly from noisy CT-scanned data.
This algorithm consists of approximation technique and analytical differential calculations,
both of which are based on a spherical covering technique. Because of employing these

two techniques, proposed algorithm achieves noise-robust skeletal structure extraction.

6.1 Introduction

Skeletal-sheet plays important roles in many areas including industrial engineering,
computer graphics, medical engineering. Among these areas, we consider the case of use
in industrial engineering such as reverse engineering. This area treats mainly thin objects
and in many cases these shapes are obtained as CT-scanned data. Recent advances
in X-ray-based CT scanning technology have enabled accurate measurement even for
mechanical objects consisting of thin parts. A thin object and its CT-scanned data are
shown in the images of Fig.6.1 (a) and (b). We can easily extract the boundary of a
scanned object using isosurface extraction techniques such as Marching Cubes and dual
contouring [LC87, JLSWO02]. An example of extracted isosurface of the object can be seen
in Fig.6.1 (c).

However, as mentioned in [FKS06, FSKKO05], it is often necessary to extract a scanned
object as single sheet as a structure in Fig. 6.1 (d) (rather than as a two-sided thin object in
Fig.6.1 (c)) for further digital manipulation such as reverse engineering, quality evaluation
and physical simulation. Skeletal-sheet extraction is one possible solution to meet this

request. Extracted sheet is mainly represented as a surface mesh.
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Fig. 6.1. Industrial object: CT-scanned data, extracted isosurface, and skeletal sheet.
(a) Not divided industrial objects.
(b) Three slices of CT-scanned data of an object which is a unit of the object
in (a).
(c) Isosurface of a CT-scanned data of the object.
(d) Extracted skeletal sheet.

6.1.1 Problem Setting

The goal of this study is to extract a 2D skeletal structure as a surface mesh approxi-
mating it directly from CT images of an object. As a target object, we treat only a thin
object which is made up of single material like that demonstrated in Fig.6.1. Generally,
a volumetric image of a real-world object obtained using a scanning technology such as
the CT scan method includes much amount of noise. The difficulties of this problem exist

in achieving robustness for noise in CT-scanned data.
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6.1.2 Our Approach

Given a volumetrically sampled solid object, our method extracts a well-connected and
not-fragmented skeletal structure represented as a polygonal mesh.

The CT canned value of an object increases gradually near the boundary of the object.
In the direction of thickness, CT scanned value of a thin object increases then decreases
without reaching sufficiently high value, as a result, a peak appears near the center. See
Fig. 6.2 which shows three objects with different thicknesses. CT value is affected by the
thickness of objects. The object on the top is sufficiently thick and CT value reaches high
value. As object becomes thinner, the range which achieves high value decreases. For
object which is not sufficiently thick as seen in the bottom image, its CT value decreases

soon without reaching an expected value.

anjeA 19

N

Fig. 6.2. Changes of CT values of three objects with distinct thickness.
Left: objects with distinct thicknesses. Right: graphs of CT value at the red
cuts in the left figure.

On the basis of this observation, we focus on the fact that for a thin plate object,
the skeletal structure can be roughly approximated by the maxima of the intensity of
CT-scanned data, see Fig.6.3.

Our aim is employing approximated intensity obtained with a spherical cover rather
than raw CT-scanned values, and analytically evaluating the maxima of intensity using
the discrete differential operators.

Our approximation with spherically supported functions has the following benefits:

Desired boundary. The approximation makes obtained skeletal structure reach to bound-

ary of an object without branch, as can be seen in Fig. 6.4.
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Fig. 6.3. Similarity of the skeletal structure and the maxima of intensity.
Left: a slice of CT-scanned data and its maxima (red).
Right: graph of density of an object (top) and graph of intensity of CT-scanned
data (bottom) at a cut of blue line in the left image.

Fig. 6.4. Extracted skeletal structure reaches to the end of an object.

Adaptive smoothing. Achieving both smoothness and precise representation of a skeletal
structure is a difficult task. Smooth representation can be realized with aid of generating
an approximation function of intensity obtained with local approximation functions. But
just a straightforward approach with a fixed support size, such as Gaussian convolution of

the image [Loh98], often leads to over/undersmoothing. We arrive at the goal with adap-
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Fig. 6.5. Adaptive spherical cover and a close-up of the bottom-right corner.

tive decision of support size applying an error-driven approach. It has better smoothing

effects on scanning noise while preserving important geometric features.

Fig. 6.6. Adaptive grid used in skeletal structure extraction and a close-up of the bottom-
right corner.

Adaptive grid generation. Regularly polygonization of skeletal sheets is performed on a
uniformly sampled cubical grid [FP01]. In contrast, the version used in proposed polygo-
nization is an adaptively sized tetrahedral grid obtained from adaptive spherical supports
of local approximations. Polygonization using such a grid gives adaptive sampled mesh

of a skeletal structure.

Mathematical concepts
The following are more mathematical descriptions of the concepts mentioned above.

Let a 3D scalar field f(x) be a C- continuous function defined in a domain including
a given solid object. The proposed skeletal structure extraction simply finds the locus of

points satisfying the following conditions:

(e,Vf) =0, A<0 (6.1)
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Fig. 6.7. A cross section of C*-continuous scalar field f(z).
Left: a thin object. Right: a slice of a scalar field.

where e is the eigenvector of the Hessian of f(x) associated with the minimum eigenvalue
A. This condition means that f(x) takes the local maximum along direction e. The
skeletal sheet obtained with strategy is known as a height ridge in image processing
[Ebe96, Lin98]. In geometric modeling, surfaces defined using such extremal conditions
are generally referred to as extremal surfaces [AKO04].

A typical choice for f(x) is a distance field from a solid boundary, but the skeletal
sheet of a distance field is topologically too complicated: skeletal sheet has the number of
branches, in the case that the boundary surface is not smooth enough. Our simple choice
for f(x) is an approximation of the intensity values of CT images, which are higher inside
scanned objects. f(x) can be constructed from CT scanned image of an object, using
spherical covering technique. An example of a cross-section of a 3D scalar field can be
seen in Fig.6.7.

In order to generate a smooth approximation function of intensity, we use a spheri-
cal supports based on the partition of unity technique consisting of a set of spherically
supported quadratic polynomials. This approach is similar to that in the previous chap-
ter. But, in terms of skeletal structure extraction, only inside scalar field is enough since

required skeletal structure shows the object’s internal characteristics.

6.2 Algorithm

In this section, first we show the overview of the algorithm which generates a mesh
approximating the skeletal sheet directly from a volume data of a thin object. Fig.6.8
shows the overview with examples. From a volumetric data, a scalar field approximating
the intensity is generated employing a spherical cover on the basis of partition of unity

approach. Then the maxima of intensity which is regarded as the skeletal structure in
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this algorithm is extracted as a surface mesh. The details of each step are explained in

the following sections.

6.2.1 Algorithm Overview

This algorithm consists of three parts as shown in Fig.6.8. 2D version results of each
step are shown in Fig. 6.9. First, the intensity of input image is approximated through a set
of adaptively spherically supported polynomials that provide an smoothed intensity field.
As mentioned above, the maxima of the generated scalar field serves as a skeletal sheet.
This part follows the algorithm developed in Section3.4.2. Fig.6.9(a) shows sampling
points, and (b) is the generated spherical cover.

Next step is generation of an adaptive grid which is used in evaluation and polygo-
nization of a skeletal structure. In this study, an adaptively sampled grid is realized by a
subset of the weighted Delaunay tetrahedrization which is determined by a set of spherical
supports. The generation of such a tetrahedral mesh has been explained in Section 3.5.
Fig.6.9(c) is the tetrahedral mesh generated from the spherical cover in (b).

Finally, in order to detect extremality, the derivatives are analytically evaluated on the

tetrahedral mesh as shown in Fig.6.9(d).

Algorithm: generating polygonized skeletal structure

1. Approximate the intensity of points with spherically supported functions

2. Generate an adaptive grid with a weighted Delaunay tetrahedrization

3. Find and polygonize the maxima

6.2.2 Skeletal mesh generation

In the last of the extraction algorithm, the algorithm extracts a mesh approximating
the skeletal structure using the tetrahedral mesh as a grid. Results for 2D and 3D data are
shown in Fig. 6.9 (d) and Fig. 6.10 respectively. In this step, crossing points with a skeletal
structure and tetrahedral mesh edges are detected first. Hereafter, such a crossing point
are referred as a skeletal point. For detection of skeletal points, the gradient and Hessian
of the approximated intensities are used. These derivatives are estimated well with the
help of the approximation function f(x) provided by a spherical cover. Next, around
an edge on which a skeletal point is detected, a small patch is generated, see Fig.6.11.
Vertices of each patch exist inside the tetrahedra which incident to the edge on which the
skeletal point is detected. A set of patches created becomes a mesh approximating the

skeletal structure.
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Fig. 6.8. Overview of the algorithm for skeletal structure extraction.

Skeletal points. Using a polynomial approximation function is a powerful method for
estimating quality gradients and curvatures. To extract a smooth skeletal mesh, we use

the gradient g, the first-order derivative of the approximation function f(x):
9g=V/, (6.2)
and the Hessian H, the second-order derivative:

H=Vg. (6.3)

Let p; and ps be the end points of an edge with coordinates x; and xo respectively,
and let the eigenvectors corresponding to the minimum eigenvalues of H at p; and ps be
e; and e,. See the image on the left of Fig. 6.11. We assume that the inner product of e;
and ey satisfies (eq, e2) > 0. If this is not true, flip e; to make —ey for this condition to
be satisfied.

As explained in Mathematical Concepts, the extrema are points satisfies (e,g) = 0.

Hence the existence of zero-crossing of (e, g) can be tested with the condition

(e1,91) (€2, 92) < 0. (6.4)

Next, for an edge that satisfies the above condition (6.4), whether the extremum is
the maximum or minimum is checked. As a skeletal structure corresponds to a set of
maximum points, only the crossing points corresponding to the maxima are needed. To

test the maximality, the condition proposed in [OBS04] is used:
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(a) (b) () (d)
Fig. 6.9. Overview of skeletal structure extraction in 2D.

(a) Input grayscale image.

(b) Support circles of approximation functions.

(c¢) Triangular mesh based on (b).

(d) Skeletal structure.

if inequation

(€i,gi) ((zj —xi),€;) >0 (6.5)

holds for (i,7) = (1,2) or (2, 1), this edge has a skeletal point.

Remember the facts that g; shows the direction of increase of f(x) and that e; shows the
direction in which the changes of value of f(x) is maximum. As suggested by the second
fact, checking the partial differential in direction of e; which is realized with inner product
with e; is reasonable. The above condition means intuitively that, in terms of direction
e;, g increases along the edge, and thus, a maximum value exists between the endpoints.
The first inner product calculates the change of g; in the direction of e;. In the second
inner product, identification of the directions of the considered edge and e; is checked.
The identify of directions of g and the edge is tested with the use of the product of these
two inner products. The left image in Fig. 6.11 shows the case that detected crossing point
¢ is a maximum point.

In the case that an edge is perpendicular to e;, this condition cannot determine existence
of maximality. This is the reason that this condition is checked on the both endpoints of
an edge.

Assuming that (e;, g) which means the partial differential of g in direction e; changes

linearly along the edge, the coordinates of the skeletal point are calculated through interior
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Fig. 6.10. Polygonized skeletal structure.
Left: a thin pipe-like object and mesh of its skeletal structure.
Right: wire frame of close-up of the boxed part in the left image.
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Fig. 6.11. Skeletal patch generation.
Left: edge intersecting with a skeletal structure (green sheet).
Right: generated skeletal patch around the edge.
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Skeletal patches. After the detection of skeletal points, skeletal patch generation is per-
formed. Around skeletal point ¢ a small patch is generated as shown in the image on
the right of Fig.6.11. This patch is referred to as a skeletal patch in this thesis since the
set of these patches approximates the skeletal structure. Single skeletal patch is realized
with several triangles whose one vertex is c. Other vertices of a skeletal patch exist inside
tetrahedra which incident to the edge on which c is detected. A vertex g; of a skeletal
patch in such a tetrahedron ¢; is the centroid of all skeletal points detected on edges of ¢;.
All incidenting tetrahedra have such centroids since each of those has at least one skeletal
point, c.

After all vertices of a skeletal patch are calculated, those vertices and ¢ are connected
with traversing all the incident tetrahedra. For instance, from a sequence of k vertices
q1,q2,---,qr a skeletal patch is generated which is realized with k triangles sharing the
skeletal point c¢. In other words, triangles {q1,q2,c},{q2,q3,¢},...,{qk,q1,c} are gener-
ated and they approximate the skeletal structure, see the right image of Fig.6.11. This

procedure is a tetrahedron-based variation of the dual contouring proposed in [JLSW02].

Smoothing with Expanding Spherical Supports. For skeletal patches to be well connected
and not fragmented, it is important that the derivatives change smoothly. Such a smooth
derivatives can be easily obtained through expanding the size r; of a spherical support to
or; (0 > 1) in the evaluation of g and H. This expansion makes the local approximation
functions affect in larger regions. The all results demonstrated in this thesis are obtained
with o = 4 unless otherwise specified.

The results of this support expansion is shown in Fig.6.12. In the result with ¢ = 6,
the effect of smoothing is rather strong. As observed in ears, in areas where the curvature
is high, extrema do not appear. Actually, in such cases the extrema exists outside the
tetrahedral mesh. Since the proposed algorithm does not perform detection outside of a
tetrahedral mesh, some parts of the extrema may disappear. But in such cases derivative

estimation is far from accurate, and thus skeletal structure is meaningless.

6.2.3 Smoothing Local Approximation Functions

In the case that input data includes much amount of noise as CT-scanned data, the
derivatives tend to be unstable. For thin objects like ones discussed in this algorithm, this
adverse effect notably appears. See Fig. 6.13, the results obtained with no countermeasure
against noise. The influence is especially notable around crossing-points which cannot be
detected well because of the instability of derivatives. As a countermeasure against this

problem, we propose to smooth the differentials of the local approximation functions using
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Fig. 6.12. Effect of expanding spherical supports in the evaluation of derivatives.
(a) Isosurface of a CT-scanned data of the Stanford bunny.
(b) A cross-section of the scalar field defined by f(x).
(¢) Result with o = 3.
(d) Result with o = 6.

the differential operators defined in Chapter 4.
In order to improve the stability of derivations, we smooth the differentials of the local

approximation functions after generating an initial spherical cover. The new algorithm

for skeletal structure extraction with smoothing local functions is below.
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Fig. 6.13. Skeletal structure for an object with T-junction.

Algorithm: generating polygonized skeletal structure with smoothing

1. Approximate the intensity of points with spherically supported functions
2. Smooth the differentials of the local approximation functions through diffusion tech-
nique

3. Generate an adaptive grid with a weighted Delaunay tetrahedrization

4. Find and polygonize the maxima

In our skeletal structure extraction, derivative estimations are performed only on the
centers of supports, and therefore we can adopt the differential operators derived in Section
5.2.3 in Step 2 of the above algorithm. In order to apply the smoothing algorithm in
Section 5.2.3, there are two structures to be changed. First, a no-gap spherical cover for a
region such as a bounding box which includes the all points is required. The reason is the
smoothing process uses adjacency of spherical supports. But a spherical cover generated
in the previous skeletal structure extraction covers only object points and points around
the object. In addition, the local approximation functions {g;(x)} to be smoothed have

to be linear. That is, new g;(«) should be a linear function

gi(x) = czx + cyy + .2 + co. (6.7)

In the remarking from wuncovered to covered, convex hulls determined by both kinds of
points should be used.
Following these two changes, Algorithm: generating spherical cover has three

parts that must be changed: the degree of local approximation function, the area covered
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with a spherical cover, and the covering check. The new algorithm to generate a scalar

field is as follows. The differences with the previous algorithm are Step 1, 2, and 3.

Algorithm: generating spherical cover

1. Initialization: set & as the center candidate list %.
Mark all points in € as uncovered

2. Spherical support generation: select a point randomly from % as a center ¢;
and decide the radius r; and local linear function g;(x)

3. Covering check: remove covered points from %

4. Termination check: if ¢ = () then the algorithm terminates.

Otherwise go back to Step 2

Smoothing algorithm for a skeletal structure extraction is not the straight extension of
the smoothing of the local approximation functions. It is because the object of our cal-
culation is not the values of the approximation function but the values of the differentials
of the approximation function. In the diffusion for surface reconstruction, we solved the
Laplacian smoothing and the Poisson equation. Other equations to be solved have to be

realized and formulated.

6.3 Result

Experimental results. 'We implemented the skeletal structure extraction except for smooth-
ing local approximations. Some results for CT scan data are shown in Figs. 6.14, 6.15 and
6.16. The coloring on the cross section shows the input CT values (red for high and blue
for low). Each of extracted skeletal structure extends to the ends of an object without
branching. Fig.6.14 gives the results for objects with uniform and nonuniform thickness.
Proposed algorithm works well for both examples. The object in Fig.6.16 has a noisy
boundary. This algorithm can extract a smooth skeletal structure even from such data.

The bumps on the surface of the original object do not affect the results.

Comparison with image processing approaches. Since input data is a CT image, it is also
possible to extract skeletal voxels using conventional image processing approaches. Given
a certain value and a direction at each voxel, non-maximum suppression [Can86] is one
of the most popular method for finding the voxels taking local maximum value along the
directions. For extracting skeletal voxels, we use the standard Gaussian convolution of
CT values to obtain the value and direction at each voxel [Loh98].

As shown in the top images of Fig.6.17, the image processing approach works well for the
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Fig. 6.14. Skeletal structures of objects with uniform and non-uniform thickness.
Left: results for a CT scanned object with a uniform thickness.
Right: results for a CT scanned object with a non-uniform thickness.

Fig. 6.15. Skeletal structure for a perforated metal plate.

model with a uniform thickness if we choose a proper kernel size of Gaussian convolution.
However, it is hard to obtain a good result for the model with a non-uniform thickness
because the fixed kernel size causes under-smoothing (fail to eliminate unwanted branches)
or over-smoothing (skeletal voxels go out of the object). See Fig.6.18 for examples of
such problems. Parts of voxels are not extracted properly. Result in the left figure has
branches because of under-smoothing, and the right has disappeared part because of over-
smoothing. In contrast, proposed method automatically adjusts the support sizes of local
approximations applying the error analysis in equation (3.11). Thus a proper smoothing
effect can be adaptively obtained.

Moreover, to generate a mesh approximating a skeletal structure from extracted voxels,

we have to apply a surface reconstruction method to connect the centers of extracted
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Fig. 6.16. Skeletal structure for a thin plate with a hole.

voxels with polygonal patches. The bottom images of Fig.6.17 show triangular meshes
obtained from the skeletal voxels. Since the mesh vertices are located on the grid points,
the meshes are not smooth enough unlike the meshes obtained through proposed method.
Further, some of surface reconstruction methods are fail to reconstruct meshes because
the grid artifact behaves as large noise.

Compared with the Gaussian convolution of a 3D image, proposed algorithm is an
expensive task. For example, it takes about ten minutes on a standard PC for computing
the result shown in Fig.6.16 while about three minutes for Fig.6.17. This is the only
drawback of proposed method against the non-maximum suppression with the Gaussian
convolution. However, proposed method does not require a grid sampling structure to the
input volume. Therefore it is possible to apply this method to scattered volume samples
(irregularly sampled points with values) which cannot be handled by image processing

approaches.

6.4 Discussion

Instability in derivative calculation. Theoretically speaking, the algorithms proposed in
Section 6.2.2 can handle even T-junctions as long as edges which should have skeletal
points are detected. But actually we observed that the derivatives around such parts
are very unstable, and thus we found detection for non-manifold parts is practically a
difficult problem. See the image (b) in Fig.6.19. As shown in surface reconstruction in
Section 5.2.3, smoothing the local approximation functions as proposed in Section 6.2.3 will
greatly help improvement of stability. We plan to implement this proposal and compare

its results with current results.
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Fig. 6.17. Results obtained using non-maximum suppression for a CT image in Fig. 6.16.
Top: extracted skeletal voxels.
Bottom: a triangular mesh generated connecting the skeletal voxels.

Cleaning. The result meshes in this chapter are not cleaned at all. So the extracted
skeletal structures may have a few unwanted fragments, see Fig.6.19(c). To discard these
fragments and obtain only a skeletal structure, cleaning up generated mesh using certain
restrictions is required. For instance, weighting area of patches employing the absolute
values of the eigenvalues of the Hessian and thresholding the value may help to delete
fragments.

Existing tiny holes as in the image (d) of Fig.6.19 is also a problem. The reason
of appearance of those holes is the degeneracy of a tetrahedral mesh. Changing the
perturbation into theoretically more concrete one will eliminate such degenerate parts.

Symbolic perturbation is an instance of theoretically guaranteed perturbation.

Decision of support size. Another remaining subject is deciding the minimum and max-
imum radii of support spheres. The support size should play an important role in this

algorithm, but the relationship lies outside the analysis of this thesis. We would like to
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Fig. 6.18. Skeletal voxels obtained using non-maximum suppression for the right model
in Fig.6.14.
The original object is a model with a non-uniform thickness.

Fig. 6.19. Problems in generated mesh and close-ups of them.
(a) Generated mesh with problems.
(b) Area failed to be extracted.
(¢) Undesired fragments.
(d) Holes generated in polygonization.

make progress toward decision of these values.

Timing. As mentioned in the last part of Section 6.3, the proposed algorithm takes high
computational cost. Especially tetrahedrization takes a large part of the computational
time. The tetrahedrization explained in this chapter is a straightforward way for a spher-
ical cover. However, it is an O(n®) algorithm for n the number of supports. Adopting
another grid structure can reduce the computational time although Delaunay-based tetra-

hedrization has an advantage of generating an adaptive grid.

Formulation for smoothing. In general, volumetric data includes much amount of noise. So
smoothing before evaluating the maxima is considered as a good solution. But the object

of this smoothing is not the values of the approximation function. This is the difference
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between the smoothing for surface reconstruction. Formulating of the smoothing for

skeletal structure extraction is a future work.

6.5 Summary

In this chapter, an algorithm to extract a triangular mesh approximating the sheet-
like skeletal structure of a CT-scanned thin object is proposed. This algorithm consists
of approximation based on a spherical covering technique and derivation on an adaptive
grid. Using proposed algorithm, a smooth mesh can be directly obtained from scanned
data. Because of the approximation strategy, proposed algorithm can detect a smooth

skeletal structure that reaches almost to the ends of the object.
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Conclusion and Future Work

We extended a spherical covering method with deriving discrete differential operators for
a spherical cover with linear local approximation functions. Equipping proper differential
operators expands the applications of spherically supported functions. As instances of
applications using spherically supported functions, we also developed two algorithms in
surface reconstruction and skeletal structure extraction. In this chapter, we summarize

the contributions of this thesis first, next describe future research directions.

7.1 Summary of Contributions

Differential Operators on a Spherical Cover. We derived discrete differential operators on
centers of spherical supports: gradient, divergence, and Laplacian. In the derivation, we
assumed two conditions: assignment of a constant vector to each spherical support and
discretization of boundary of a support. In many cases these assumptions are reasonable
and proposed operators can be directly introduced.

Proposed operators are proper to a spherical cover and considered suitable for processing
on a spherical cover. Thus using proposed operators is expected to provide better results
than ones with traditional continuous operators.

Because of their fundamental nature, proposed operators can be applied to various kinds
of attributed data such as volumetric data. We also developed two application algorithms
for point cloud from a surface of an object and volumetric data respectively. In these
algorithms, differential operators are used to reduce influence of noise included in input

data.

Surface Reconstruction. The goal of surface reconstruction is precise and smooth repre-
sentation.

We arrived at the former property on the basis of partition of unity approach with
a spherical cover. The drawback of this method is dependency on the quality of data;

the method is especially sensitive to problematic parts in scanned data such as noise,
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outliers, lack of sampling, and differences in sampling density. These problems make
surface reconstruction an essentially difficult subject.

We achieved the robustness for outliers, lack of sampling, and differences in sampling
density through combining Graph-cut to the partition of unity approach. Difficulties
caused by noise, lack of sampling, and differences in sampling density are overcome with
diffusing local approximation functions of a spherical cover. The diffusion is performed on
a spherical cover employing Laplacian smoothing and solving Poisson equation, in both
operations the discrete differential operators are used. Smooth representation is realized
these two strategies.

In addition, we proposed a novel measuring of confidence of sampling points. This
measurement is defined through observation of the difference of angles between normals
of PCA plane and sampling point. This measurement can be directly performed on a

spherical cover and detect outliers effectively.

Skeletal Structure Extraction. We developed an algorithm to generate a surface mesh
approximating skeletal structure directly from volumetric data of a thin-plate and one-
material structure. This algorithm is developed through an observation that the skeletal
structure is very close to the maxima of intensity of volumetric data.

First the algorithm generates a scalar field approximating the intensity of volumetric
data employing a spherical cover, and then the skeletal structure is extracted with eval-
uating derivatives. Using approximated intensity makes evaluation of derivatives stable,
as a result, algorithm becomes robust to noise.

Generated mesh has no branch in its end unlike results generated employing strategies
employing medial-axis. In addition, ends of obtained mesh extend to the boundary of an

object. This character is useful for some applications.

7.2 Future Directions

Relaxation of assumptions in derivation of differential operators. In this thesis, to derive the

discrete differential operators, we made following two assumptions for a spherical support:

e a constant vector is assigned (Assumption 4.3.1),
e a part of boundary covered with another support is not included the other supports.

(Assumption 4.3.2).

These are strong simplifications and sometimes the artifacts caused by the unreality of
these assumptions are observed in the tiny oscillations on reconstructed surfaces, see

Fig.7.1. Tiny bumps appear in the foot which is expected to be smooth.
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Fig. 7.1. Artifacts caused by the unreality of assumptions in deriving the differential
operators.

Only in terms of cases such as our two applications which use vector fields defined with
the gradients provided approximation functions with sufficiently small errors, Assumption
4.3.1 is practical. In such cases, the difference of vectors at arbitrary two points inside a
support is not so large, and thus this assumption is not so hard in practice.

For the second assumption, although a normalized term is introduced in equation (4.9)
to negate the influence of this assumption, the actuality of this assumption may require

more verifications and experiments.

Derivation of other differential operators. Although we derived the gradient, divergence,
and Laplacian operators on a vector field, and the Laplacian operator on a scalar field,
the curl on a vector field is not refined in this thesis. Curl plays also important roles in
applications, and thus, deriving it will represent an advance in its application area. We

plan to achieve it, for instance, following an energy calculation performed in [TLHDO3].

Derivation of Discrete Integration Operators. In this study discrete differential operators
have been derived. Since the integrations also play key roles in many geometrical process-
ing as differential operators do, derivation of discretized integration operators is another
worthwhile subject. It will make possible direct calculations of fundamental quantities
as area of surfaces and volume of objects through no conversions of shapes into meshes.
Spherically supported functions with discrete integration operators will become more pow-

erful and excellent representation.

Diffusion of higher order local approximation functions. The linearity assumption is natural
if the finally required representation is mesh. It is verified with experiments demonstrated

in this thesis that the ability of representation is enough high to satisfy a required level in
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most applications. However, it is also true that raising the order of local approximations
to quadratic or cubic equations broadens the area of application.

The diffusion technique in Chapter5 is developed completely on the basis of the lin-
earity of local approximations: the vector field is defined with the gradients and Poisson
equation is derived from the discrete divergence operation on the gradient of approxima-
tion function. That is, the reason of the dependency on the linearity is the assumption
of discrete operators. Thus, for changing the order of local approximations, changing the

derivation of the discrete operators with more sophisticated one is required.

Diffusion of local approximation functions with changing support sizes and center positions.
The support size and its center are decided with error-driven approach in the first step
of the algorithm, and it is not changed in the following steps. Changing the support size
and the position of the center after the updating of local approximations may improve

the accuracy of reconstructed model, and thus this direction warrants study.

Adaptive Smoothing. The smoothing proposed in this thesis smoothes all the local approx-
imations uniformity. The size of the supports reflects the details of the surface inside, so
changing the level of the smoothing adaptively is expected to be a better detail-preserved

smoothing.

Reconstruction of sharp features. For surface reconstruction, we proposed an adaptive
smoothing method mainly employing smoothing technique. This algorithm can roughly
reserve edges, but cannot represent sharp features. Reservation of sharp features is an
important subject as smooth representation, so it is an important subject. One straightfor-
ward solution is assigning more than one local approximation as MPU [OBA03]. Group-
ing input points inside a support with the direction of normals, and then each group is
fitted a local approximation. Finally the inside/outside of an object is recognized through

set operations for the local approximations.

1D and 2D skeletal structure extraction. This is a direction for generating skeletal struc-
tures with higher ability of representation. It is worth extracting skeletal structures com-
posed to line-like structures and sheet-like structures. Such mixture of 1D and 2D skeletal
structures are useful for more intuitive understanding object shapes. The proposed algo-

rithm can become a fundamental method of extraction of such structures.

Processing Higher Dimensional Data. Nowadays many attributed scanned data can be
available. We believe that the proposed smoothing strategies are suitable for such data.
Possible applications are, for instance, approximation of intensity values of time-varying

CT-scanned data (4D to 1D), and reconstruction with colors (6D to 4D, transforming



7.2 Future Directions 117

spacial points with colors to the signed distance with color attributes). These are very
attractive subjects because of the expectations that extra attributes make approximations

more stable or precise ones.
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Appendix A

Graph-cut

Graph-cut often appears in image processing because of its advantage to divide areas
with target attributes even from an image with ambiguous boundaries. Graph-cut is equal
to solving a problem known as Max-flow min-cut problem in graph theory.

A graph G is a structure which is composed to nodes V and edges E which are lines
connect subset of nodes. In the case edges are assigned numerical weights, the graph is
called as a weighted graph.

Let us consider a weighted graph with nonnegative weights. A cut C' = (S,7T) is a
partition of nodes into two disjoint groups S and 7. Edges whose end nodes are belong
to different groups are called as cut-set. The weight of cut is defined as the sum of
weights of cut-set. Graph-cut is a problem to find the cut with the minimum weight. In
Graph-cut, two special nodes source and sink are assigned which are referred as terminal
nodes. Graph-cut finds the minimum cut C' = (S,T") which source € S and sink € 7.

Fig. A.1 shows an example of extraction of an area from an image. Usually, each pixel
has a corresponding node although only several nodes are represented in these figures.
The left image shows a weighted graph and a target area (pink region). The center image
is the result obtained with Graph-cut. The set of yellow edges is the cut-set. Nodes are
colored as the groups which belong to. As a result, target area can be obtained through

extraction of the souse-side nodes.

(D =g X =8 X

Fig. A.1. Graph-cut in 2D.
Left: source and sink nodes are determined. Center: the minimum cut is ob-
tained through Graph-cut. Right: the cut classifies nodes into two groups.
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Appendix B

Speed-up of Calculating Connectivity of
Support Spheres

In the algorithms introduced in this thesis, many operations require accessing neighbors
of spheres. Calculating neighbors every time they are needed is very time consuming. For
achieving fast computation, we construct a kd-tree of centers of support spheres and a list
of neighbors of each support sphere. We refer these structures while processing following

operations.

B.1 Data Structure

A list of neighbors of spherical supports is referred to as a sphere intersection graph
(SIG). SIG is realized by a list whose each element is a list of neighbors of a spherical
support. After the generation of a spherical cover, we construct a kd-tree of centers and
SIG. For a support sphere s; with the center ¢; and the radius r;, centers inside a sphere
whose center and radius are c¢; and 2r; are collected. And then a support sphere s;
corresponding to a collected center is checked whether intersections with s;. If s; has an
intersection, s; and s; are neighbors of each other. Note that the radius of s; is small, s;
may not be recognized in the term of s;. But in the term of s;, s; can be recognized. So
a pair of intersecting supports s; and s; is detected, add each supports into the lists of

neighbors of the others.

B.2 Queries

While processing the proposed algorithms, two kinds of geometrical queries are made
frequently. One is for collecting points inside a certain sphere and the other is for collecting
spheres including a certain point. In order to accelerate these two geometrical queries, we
use two other data structures. The former query can be achieved with a kd-tree of points.

Starting with the nearest point from the center of specified support, checking whether a
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point which is the next of the included point is within the specified sphere is enough. For
collecting spheres including a specified point, we use an octree-based structure introduced
in [WRC88]. The basic idea is storing large spheres in large octants and small spheres in

small octants. We recommend to refer the article for details.

B.3 Performance

In order to improve the time and memory for calculation, reducing the number of degree
of SIG is reasonable. The most simple way is shrinking the support sizes while obtaining
the connectivity of SIG. Shrinking 0.6 ~ 0.8 times of the original sizes is recommended.
More sophisticated way is restricting the maximum number of the degree using priority
queue. It can be ordered by the area of intersection, for instance. Note that this restriction

may occur some artifacts in your results.
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Appendix C

Polygonization of Iso-surface

The polygonization of an isosurface of a scalar field or volumetric data has been studied
well. The Marching Cubes [LC87] is the early one and followed by many variants and
improvements because of its simplicity and good results. The variants are the dual con-
touring [JLSWO02] and the marching tetrahedra [PT90, GH95] which we changed for the
Graph-cut in Section 5.2.2, for instances. The basic idea of these polygonization algo-
rithms is as follows, this polygonizes the isosurface with zero value. See also the Fig. C.1

which shows the above algorithm in 2D.

1. Make a grid in the area including the isosurface if the data is not volumetric data
(volumetric data has axis-aligned points)

2. Evaluate the values on all grid points of each grid cell

3. Make a surface inside each grid cell which has at least one edge with different signs

of values

In step3, vertices of the surface are on edges with different signs of values, as the right
image of Fig. C.1. The positions of vertices are determined on the edge through interpola-
tion with the absolute values of the assigned values of the end points. Fig. C.1 shows the
case polygonizing the zero-level surface (yellow line) between the area inside the object
(positive value, pink) and the area outside (negative value, blue). The obtained polygon
is shown with green lines and points. In a 3D case, grid cells are cubes while in 2D they

are rectangles.
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7
faRiEts

Fig. C.1. The Marching cubes in 2D.
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